Skip to main content
Log in

Petal-shaped MoS2/FeS2@C nanocomposites with enhanced peroxidase-like activity for colorimetric detection of H2O2 and glutathione

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we reported the FeS2@C nanocapsules-modified petal-shaped MoS2 nanosheets (MoS2/FeS2@C) peroxidase prepared by arc discharging combined with hydrothermal methods. We thoroughly investigated their peroxidase-like activities in the colorimetric detection of H2O2 and glutathione (GSH). The results indicate that the prepared petal-shaped MoS2/FeS2@C nanocomposites exhibit enhanced peroxidase activity compared to the single-component MoS2 or FeS2@C. The detection ranges and detection limits (LOD) are 1–150 μM and 0.43 μM for H2O2, respectively, while for GSH, they are 0.2–40 μM and 0.14 μM, respectively. The superior peroxidase-like activity of the MoS2/FeS2@C results from the synergy between the MoS2 and FeS2@C. This synergy creates abundant active sites and more substance shuttle channels, which increases the cyclic efficiency among Fe3+/Fe2+ and Mo6+/Mo4+ and improves the yield of hydroxyl radicals. As a result, the MoS2/FeS2@C nanocomposites acquired quick electron transport and improved peroxidase-like catalytic performance. Moreover, the MoS2/FeS2@C nanocomposites exhibit high stability and selectivity, retaining high-activity levels even after 30 days. These make them promising candidates for use in biosensing and catalysis applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. T. Chen, Y.H. Min, X. Yang, H. Gong, X.Y. Tian, L. Liu, Y.H. Hou, W.S. Fu, ACS Omega 7, 11135 (2022). https://doi.org/10.1021/acsomega.1c07264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. J.J.C. Wu, X.Y. Wang, Q. Wang, Z.P. Lou, S.R. Li, Y.Y. Zhu, L. Qin, H. Wei, Chem. Soc. Rev. 48, 1004 (2019). https://doi.org/10.1039/C8CS00457a

    Article  CAS  PubMed  Google Scholar 

  3. L.Z. Gao, J. Zhuang, L. Nie, J.B. Zhang, Y. Zhang, N. Gu, T.H. Wang, J. Feng, D.L. Yang, S. Perrett, X.Y. Yan, Nat. Nanotechnol. 2, 577 (2007). https://doi.org/10.1038/nnano.2007.260

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Y. Liu, Y.L. Qing, L.C. Jing, W.T. Zou, R. Guo, Langmuir 37, 7364 (2021). https://doi.org/10.1021/acs.langmuir.1c00697

    Article  CAS  PubMed  Google Scholar 

  5. X.X. Xi, X. Peng, C.Y. Xiong, D.Y. Shi, J.L. Zhu, W. Wen, X.H. Zhang, S.F. Wang, Microchim. Acta 187, 383 (2020). https://doi.org/10.1007/s00604-020-04373-w

    Article  CAS  Google Scholar 

  6. S.Q. Li, L.T. Wang, X.D. Zhang, H.X. Chai, Y.M. Huang, Sens. Actuators B: Chem. 264, 312 (2018). https://doi.org/10.1016/j.snb.2018.03.015

    Article  CAS  Google Scholar 

  7. L.T. Wang, S.Q. Li, X.D. Zhang, Y.M. Huang, Talanta 216, 121009 (2020). https://doi.org/10.1016/j.talanta.2020.121009

    Article  CAS  PubMed  Google Scholar 

  8. Z.Z. Wang, K. Dong, Z. Liu, Y. Zhang, Z.W. Chen, H.J. Sun, J.S. Ren, X.G. Qu, Biomaterials 113, 145 (2017). https://doi.org/10.1016/j.biomaterials.2016.10.041

    Article  CAS  PubMed  Google Scholar 

  9. Y.Y. Huang, J.S. Ren, X.G. Qu, Chem. Rev. 119, 4357 (2019). https://doi.org/10.1021/acs.chemrev.8b00672

    Article  CAS  PubMed  Google Scholar 

  10. H. Wei, L.Z. Gao, K.L. Fan, J.W. Liu, J.Y. He, X.G. Qu, S.J. Dong, E.K. Wang, X.Y. Yan, Nano Today 40, 101269 (2021). https://doi.org/10.1016/j.nantod.2021.101269

    Article  CAS  Google Scholar 

  11. D.W. Jiang, D.L. Ni, Z.T. Rosenkrans, P. Huang, X.Y. Yan, W.B. Cai, Chem. Soc. Rev. 48, 3683 (2019). https://doi.org/10.1039/C8CS00718G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Y.B. Zhou, B.W. Liu, R.H. Yang, J.W. Liu, Bioconjugate Chem. 28, 2903 (2017). https://doi.org/10.1021/acs.bioconjchem.7b00673

    Article  CAS  Google Scholar 

  13. C. Song, W. Ding, W.W. Zhao, H.B. Liu, J. Wang, Y.W. Yao, C. Yao, Biosens. Bioelectron. 151, 111983 (2020). https://doi.org/10.1016/j.bios.2019.111983

    Article  CAS  PubMed  Google Scholar 

  14. X. Huang, Z.D. Nan, Talanta 216, 120995 (2020). https://doi.org/10.1016/j.talanta.2020.120995

    Article  CAS  PubMed  Google Scholar 

  15. A.K. Dutta, S. Das, S. Samanta, P.K. Samanta, B. Adhikary, P. Biswas, Talanta 107, 361 (2013). https://doi.org/10.1016/j.talanta.2013.01.032

    Article  CAS  PubMed  Google Scholar 

  16. L.P. Feng, L.X. Zhang, S. Zhang, X. Chen, P. Li, Y. Gao, S.J. Xie, A.C. Zhang, H. Wang, A.C.S. Appl, Mater. Interfaces 12, 17547 (2020). https://doi.org/10.1021/acsami.0c01789

    Article  CAS  Google Scholar 

  17. W.Q. Xia, P. Zhang, W.S. Fu, L.Z. Hu, Y. Wang, Aggregation/dispersion-mediated peroxidase-like activity of MoS2 quantum dots for colorimetric pyrophosphate detection. Chem. Commun. 55, 2039–2042 (2019). https://doi.org/10.1039/c8cc09799b

    Article  CAS  Google Scholar 

  18. P. Zhang, W.Q. Xia, P. Deng, Y.H. Min, J. Tan, Y. Wang, W.S. Fu, Colloids Surf. B 206, 111953 (2021). https://doi.org/10.1016/j.colsurfb.2021.111953

    Article  CAS  Google Scholar 

  19. P. Borthakur, P.K. Boruah, P. Das, M.R. Das, CuS nanoparticles decorated MoS2 sheets as an efficient nanozyme for selective detection and photocatalytic degradation of hydroquinone in water. New J. Chem. 45, 8714 (2021). https://doi.org/10.1039/D1NJ00856K

    Article  CAS  Google Scholar 

  20. J. Zheng, D.D. Song, H. Chen, J.L. Xu, N.S. Alharbi, T. Hayat, M. Zhang, Chin. Chem. Lett. 31, 1109 (2020). https://doi.org/10.1016/j.cclet.2019.09.037

    Article  CAS  Google Scholar 

  21. T.R. Lin, L.S. Zhong, L.Q. Guo, F.F. Fu, G.N. Chen, Nanoscale 6, 11856 (2014). https://doi.org/10.1039/c4nr03393k

    Article  CAS  PubMed  ADS  Google Scholar 

  22. J. Liu, J.Y. Du, Y. Su, H.M. Zhao, Microchem. J. 149, 104019 (2019). https://doi.org/10.1016/j.microc.2019.104019/

    Article  CAS  Google Scholar 

  23. J.Y. Lei, X.F. Lu, G.D. Nie, Z.Q. Jiang, C. Wang, Part. Part. Syst. Charact. 32, 886 (2015). https://doi.org/10.1002/ppsc.201500043

    Article  CAS  Google Scholar 

  24. B.L. Li, H.Q. Luo, J.L. Lei, N.B. Li, RSC Adv. 4, 24256 (2014). https://doi.org/10.1039/C4RA01746C

    Article  CAS  ADS  Google Scholar 

  25. P. Borthakur, P.K. Boruah, M.R. Das, S.B. Artemkina, P.A. Poltarak, V.E. Fedorov, New J. Chem. 42, 16919 (2018). https://doi.org/10.1039/C8NJ03996H

    Article  CAS  Google Scholar 

  26. N.R. Nirala, S. Pandey, A. Bansal, V.K. Singh, B. Mukherjee, P.S. Saxena, A. Srivastava, Biosens. Bioelectron. 74, 207 (2015). https://doi.org/10.1016/j.bios.2015.06.043

    Article  CAS  PubMed  Google Scholar 

  27. P. Singh, R.P. Ojha, S. Kumar, A.K. Singh, R. Prakash, Fe-doped MoS2 nanomaterials with amplified peroxidase mimetic activity for the colorimetric detection of glutathione in human serum. Mater. Chem. Phys. 267, 124684 (2021). https://doi.org/10.1016/j.matchemphys.2021.124684

    Article  CAS  Google Scholar 

  28. S. Balendhran, J.Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykovd, K. Kalantar-zadeh, Nanoscale 4, 461 (2012). https://doi.org/10.1039/C1NR10803D

    Article  CAS  PubMed  ADS  Google Scholar 

  29. B.L. Li, H.L. Zou, L. Lu, Y. Yang, J.L. Lei, H.Q. Luo, N.B. Li, Adv. Funct. Mater. 25, 3541 (2015). https://doi.org/10.1002/adfm.201500180

    Article  CAS  Google Scholar 

  30. Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, T.W. Lin, Adv. Mater. 24, 2320 (2012). https://doi.org/10.1002/adma.201104798

    Article  CAS  PubMed  Google Scholar 

  31. Y.R. Wang, Y.B. Xie, J. Alloys Compd. 824, 153936 (2020). https://doi.org/10.1016/j.jallcom.2020.153936

    Article  CAS  Google Scholar 

  32. L.S. Xing, X. Li, Z.C. Wu, X.F. Yu, J.W. Liu, L. Wang, C.Y. Cai, W.B. You, G.Y. Chen, J.J. Ding, R.C. Che, Chem. Eng. J. 379, 122241 (2020). https://doi.org/10.1016/j.cej.2019.122241

    Article  CAS  Google Scholar 

  33. C. Zhao, G.M. Shi, F.N. Shi, X.L. Wang, S.T. Li, Colloids Surf. A 642, 128612 (2022). https://doi.org/10.1016/j.colsurfa.2022.128612

    Article  CAS  Google Scholar 

  34. A. Hua, Y. Li, W.Y. Zhou, S.Z. Li, R.F. Cheng, J.X. Yang, J. Luan, X.H. Wang, C.H. Jiang, D. Li, S. Ma, W. Liu, Z.D. Zhang, J. Alloys Compd. 895, 162668 (2022). https://doi.org/10.1016/j.jallcom.2021.162668

    Article  CAS  Google Scholar 

  35. N. Wang, W.Q. Li, Y.D. Ren, J.Z. Duan, X.F. Zhai, F. Guan, L.F. Wang, B.R. Hou, Colloids Surf. A 608, 125592 (2021). https://doi.org/10.1016/j.colsurfa.2020.125592

    Article  CAS  Google Scholar 

  36. Y. Jia, L.Z. Zhang, A.J. Du, G.P. Gao, J. Chen, X.C. Yan, C.L. Brown, X.D. Yao, Adv. Mater. 28, 9532 (2016). https://doi.org/10.1002/adma.201602912

    Article  CAS  PubMed  Google Scholar 

  37. C. Vort, B.M. Weckhuysen, Nat. Rev. Chem. 6, 89 (2022). https://doi.org/10.1038/s41570-021-00340-y

    Article  Google Scholar 

  38. Q. Liu, Q.Q. Sun, W. Gao, J.S. Shen, Y.M. Zhang, G. Lu, Y.L. Chen, S.R. Yu, X.Y. Li, Chem. Eng. J. 441, 136070 (2022). https://doi.org/10.1016/j.cej.2022.136070

    Article  CAS  Google Scholar 

  39. J.B. Xu, Y.Y. Xing, Y.T. Liu, M.Z. Liu, X.H. Hou, Anal. Chim. Acta 1179, 338825 (2021). https://doi.org/10.1016/j.aca.2021.338825

    Article  CAS  PubMed  Google Scholar 

  40. X. Zhang, C.Y. Wang, Y.F. Gao, Microchim. Acta 187, 111 (2020). https://doi.org/10.1007/s00604-019-4078-1

    Article  CAS  Google Scholar 

  41. S.T. Li, G.M. Shi, J.S. Liang, X.L. Dong, F.N. Shi, L.M. Yang, S.H. Lv, Nanotechnology 31, 065701 (2020). https://doi.org/10.1088/1361-6528/ab4dc9

    Article  CAS  PubMed  ADS  Google Scholar 

  42. X. Pan, Y. Liu, X.Z. Wang, Z.B. Zhao, J.S. Qiu, New Carbon Mater. 33, 544 (2018). https://doi.org/10.1016/S1872-5805(18)60356-7

    Article  CAS  Google Scholar 

  43. M.X. Dong, Z.X. Wang, X.H. Li, H.J. Guo, J.X. Wang, G.C. Yan, Chem. Eng. Sci. 221, 115709 (2020). https://doi.org/10.1016/j.ces.2020.115709

    Article  CAS  Google Scholar 

  44. X.H. Deng, Y. Yang, Y.Q. Mei, J.Q. Li, C.L. Guo, T.J. Yao, Y.M. Guo, B.F. Xin, J. Wu, J. Alloys Compd. 901, 163437 (2022). https://doi.org/10.1016/j.jallcom.2021.163437

    Article  CAS  Google Scholar 

  45. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, in Handbook of X-ray Photoelectron Spectroscopy. ed. by G.E. Muilenberg (Perkin-Elmer Corporation, Physical Electronics Division, 1979)

    Google Scholar 

  46. F.L. Zhang, J.X. Liu, H.R. Yue, G.J. Cheng, X.X. Xue, Vacuum 192, 110433 (2021). https://doi.org/10.1016/j.vacuum.2021.110433

    Article  CAS  ADS  Google Scholar 

  47. S.T. Li, G.M. Shi, Y.S. Wu, L.J. Chen, X.K. Bao, D. Yu, Colloids Surf. A 671, 131659 (2023). https://doi.org/10.1016/j.colsurfa.2023.131659

    Article  CAS  Google Scholar 

  48. Y. Shu, T.K. Zhao, Y.T. Li, L. Yang, X.H. Li, G.Y. Feng, W.Y. Jia, F. Luo, Appl. Surf. Sci. 626, 157223 (2023). https://doi.org/10.1016/j.apsusc.2023.157223

    Article  CAS  Google Scholar 

  49. K. Czyzewska, A. Trusek-Holownia, M. Dabrowa, F. Sarmiento, J.M. Blamey, Catal. Today 331, 30 (2019). https://doi.org/10.1016/j.cattod.2017.11.025

    Article  CAS  Google Scholar 

  50. J.J. Zhou, J. Huang, Y. Xia, H. Ou, Z.J. Li, Sci. Total. Environ. 699, 134342 (2020). https://doi.org/10.1016/j.scitotenv.2019.134342

    Article  CAS  PubMed  ADS  Google Scholar 

  51. W. Cao, P. Ju, Z. Wang, Y. Zhang, X.F. Zhai, F.G. Jiang, C.J. Sun, Spectrochim Acta A 239, 118499 (2020). https://doi.org/10.1016/j.saa.2020.118499

    Article  CAS  Google Scholar 

  52. S.W. Kwon, S.H. Choi, Y.J. Kim, I.T. Yoon, W.C. Yang, Thin Solid Films 660, 766 (2018). https://doi.org/10.1016/j.tsf.2018.03.078

    Article  CAS  ADS  Google Scholar 

  53. H.G. Yang, R.T. Yang, P. Zhang, Y.M. Qin, T. Chen, F.G. Ye, Microchim. Acta 184, 4629 (2017). https://doi.org/10.1007/s00604-017-2509-4

    Article  CAS  Google Scholar 

  54. Q.G. Chen, T.R. Lin, J.L. Huang, Y. Chen, L.Q. Guo, F.F. Fu, Anal. Methods 10, 504 (2018). https://doi.org/10.1039/C7AY02819A

    Article  CAS  Google Scholar 

  55. X.H. Qi, H.M. Tian, X.M. Dang, Y.F. Fan, Y.B. Zhang, H.M. Zhao, Anal. Methods 11, 1111 (2019). https://doi.org/10.1039/C8AY02514B

    Article  CAS  Google Scholar 

  56. W.T. Yao, H.Z. Zhu, W.G. Li, H.B. Yao, Y.C. Wu, S.H. Yu, ChemPlusChem 78, 723 (2013). https://doi.org/10.1002/cplu.201300075

    Article  CAS  PubMed  Google Scholar 

  57. Y.N. Ding, H. Liu, L.N. Gao, M. Fu, X.L. Luo, X. Zhang, X.X. Zhang, Q.Y. Liu, R.C. Zeng, J. Alloys Compd. 785, 1189 (2019). https://doi.org/10.1016/j.jallcom.2019.01.225

    Article  CAS  Google Scholar 

  58. W.H. Di, X. Zhang, W.P. Qin, Appl. Surf. Sci. 400, 200 (2017). https://doi.org/10.1016/j.apsusc.2016.12.204

    Article  CAS  ADS  Google Scholar 

  59. L.J. Chen, X. Li, Z.Z. Li, K.J. Liu, J.P. Xie, RSC Adv. 12, 595 (2022). https://doi.org/10.1039/D1RA07601A

    Article  CAS  ADS  Google Scholar 

  60. J. Liu, L.G. Meng, Z.F. Fei, P.J. Dyson, X.N. Jing, X. Liu, Biosens. Bioelectron. 90, 69 (2017). https://doi.org/10.1016/j.bios.2016.11.046

    Article  CAS  PubMed  Google Scholar 

  61. M. Shamsipur, A. Safavi, Z. Mohammadpour, Sensor. Actuat B-Chem. 199, 463 (2014). https://doi.org/10.1016/j.snb.2014.04.006

    Article  CAS  Google Scholar 

  62. J.Y. Feng, P.C. Huang, S.Z. Shi, K.Y. Deng, F.Y. Wu, Anal. Chim. Acta 967, 64 (2017). https://doi.org/10.1016/j.aca.2017.02.025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Province Nature Science Foundation of Liaoning Province (20180550564), and the National Natural Science Foundation of China (51601120).

Author information

Authors and Affiliations

Authors

Contributions

Professor Gui-Mei Shi: conceptualization, methodology, data curation, validation, formal analysis, writing—review and editing, resources, supervision. Xin Lv: investigation, data curation, visualization, formal analysis, writing—original draft, writing—review and editing. Chen Zhao: data curation, formal analysis, investigation. Professor Xiao-Lei Wang: formal analysis, resources. Miss Xiu-Kun Bao: visualization, formal analysis. Miss Di Yu: data curation, formal analysis.

Corresponding authors

Correspondence to Gui-Mei Shi or Xiao-Lei Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 314 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, GM., Lv, X., Zhao, C. et al. Petal-shaped MoS2/FeS2@C nanocomposites with enhanced peroxidase-like activity for colorimetric detection of H2O2 and glutathione. Appl. Phys. A 130, 198 (2024). https://doi.org/10.1007/s00339-024-07325-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07325-w

Keywords

Navigation