Skip to main content

Advertisement

Log in

Investigation of the effects of tableting parameters on reliable quantitative terahertz spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Particle size ratio, tablet thickness, and compaction pressure are three important tableting parameters that affect the obtained tablet spectrum. In this study, the single-factor test and response surface analysis (RSM) were adopted to examine how these three parameters and their interactions affect the analytical measurements performed over terahertz time-domain spectroscopy (THz-TDS). Tablet samples were composed of a different percent (wt-%) of acetylsalicylic acid within microcrystalline cellulose. Results indicate that change in absorption coefficient was found to be more obvious for a larger particle size ratio. Thinner tablets were sensitive to absorption coefficient effects created as the transmitted THz radiation propagates through the tablet interfaces. Compression pressure has a limited effect on the absorption coefficient. The particle size ratio had the largest effect on the coefficient of correlation of the quantitative regression model, followed by the compaction pressure, and the tablet thickness. In this study, the optimized tableting parameters were determined: tablet thickness of 0.48 mm, particle size ratio of about 1:1, and compaction pressure of 30 MPa. Under this condition, the R2 of the quantitative regression model of acetylsalicylic acid content was 0.971 and 0.998 at the range of acetylsalicylic acid mass fraction between 10 and 90 wt-%, 1 and 30 wt-%, respectively. This study provides a method to effectively reduce the scattering effect of spectral detection of tablets by improving the sample’s properties, to provide a reference for enhancing the reliability and accuracy of quantitative measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. T. Zhang, Z. Zhang, M. Arnold, Polarizability of aspirin at terahertz frequencies using terahertz time domain spectroscopy (THz-TDS). Appl. Spectrosc. 73(3), 253–260 (2019)

    Article  ADS  PubMed  CAS  Google Scholar 

  2. K. Peiponen, P. Silfsten, J. Pajander, J. Ketolainen, Broadening of a THz pulse as a measure of the porosity of pharmaceutical tablets. Int. J. Pharm. 447, 7–11 (2013)

    Article  PubMed  CAS  Google Scholar 

  3. J. Sibik, J.A. Zeitler, Direct measurement of molecular mobility and crystallization of amorphous pharmaceuticals using terahertz spectroscopy. Adv. Drug Deliv. Rev. 100, 147–157 (2016)

    Article  PubMed  CAS  Google Scholar 

  4. F. Zhang, H. Wang, K. Tominaga, M. Hayashi, T. Hasunuma, A. Kondo, Application of THz vibrational spectroscopy to molecular characterization and the theoretical fundamentals, an illustration using saccharide molecules. Chem. Asian J. 12, 324–331 (2017)

    Article  PubMed  CAS  Google Scholar 

  5. P. Bawuah, J. Zeitler, Advances in terahertz time-domain spectroscopy of pharmaceutical solids, a review. TrAC Trends Anal. Chem. 139, 116272 (2021)

    Article  CAS  Google Scholar 

  6. L. Afsah-Hejri, P. Hajeb, P. Ara, R.J. Ehsani, A comprehensive review on food applications of terahertz spectroscopy and imaging. Compr. Rev. Food Sci. Food Saf. 18, 1563–1621 (2019)

    Article  PubMed  Google Scholar 

  7. L. Afsah-Hejri, E. Akbari, A. Toudeshki, T. Homayouni, A. Alizadeh, R. Ehsani, Terahertz spectroscopy and imaging, a review on agricultural applications. Comput. Electron. Agric. 177, 105628 (2020)

    Article  Google Scholar 

  8. H. Wang, T. Inagaki, I.D. Hartley, S. Tsuchikawa, M. Reid, Determination of dielectric function of water in THz region in wood cell wall result in an accurate prediction of moisture content. J. Infrared Millimeter Terahertz Waves 40, 673–687 (2019)

    Article  CAS  Google Scholar 

  9. L.M. Lepodise, J. Horvat, Spectroscopic studies of BA class liquid crystals in the 6–15 THz range using the Fourier transform infrared (FT-IR) method. Appl. Spectrosc. 76(7), 823–830 (2022)

    Article  ADS  PubMed  CAS  Google Scholar 

  10. S. Stranzinger, D. Markl, J.G. Khinast, A. Paudel, Review of sensing technologies for measuring powder density variations during pharmaceutical solid dosage form manufacturing. TrAC Trends Anal. Chem. 135, 1–52 (2021)

    Article  Google Scholar 

  11. A. Ahmadivand, B. Gerislioglu, R. Ahuja, Y.K. Mishra, Terahertz plasmonics, the rise of toroidal metadevices towards immunobiosensings. Mater. Today 32, 108–130 (2020)

    Article  CAS  Google Scholar 

  12. L. Lepodise, J. Horvat, Spectroscopic STUDIES of BA class liquid crystals in the 6–15 THz range using the Fourier transform infrared (FT-IR) method. Appl. Spectrosc. 76, 823–830 (2022)

    Article  ADS  PubMed  CAS  Google Scholar 

  13. A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, N. Pala, Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors. ACS Sens. 2(9), 1359–1368 (2017)

    Article  PubMed  CAS  Google Scholar 

  14. J. Hirata, N. Kurokawa, M. Okano, A. Hotta, S. Watanabe, Evaluation of crystallinity and hydrogen bond formation in stereo complex poly(lactic acid) films by terahertz time-domain spectroscopy. Macromolecules 53, 7171–7177 (2020)

    Article  ADS  CAS  Google Scholar 

  15. X. Ju, Y. Zhang, F. Lian, M. Fu, Quick test for transgenic components in rice using terahertz spectra. Appl. Spectrosc. 73(2), 171–181 (2019)

    Article  ADS  PubMed  CAS  Google Scholar 

  16. M. Massaouti, C. Daskalaki, A. Gorodetsky, A. Koulouklidis, S. Tzortzakis, Detection of harmful residues in honey using terahertz time-domain spectroscopy. Appl. Spectrosc. 67(11), 1264–1269 (2013)

    Article  ADS  PubMed  CAS  Google Scholar 

  17. T. Zhang, Z. Zhang, M. Arnold, Crystal structure-free method for dielectric and polarizability characterization of crystalline materials at terahertz frequencies. Appl. Spectrosc. 75(6), 647–653 (2021)

    Article  ADS  PubMed  CAS  Google Scholar 

  18. W. Lee, E. Widjaja, P. Heng, L. Chan, Effect of excipient particle size distribution variability on compact tensile strength; and its in-line prediction by force-displacement and force-time profiling. Eur. J. Pharm. Sci. 159, 105703 (2021)

    Article  PubMed  CAS  Google Scholar 

  19. R.K. May, K. Su, L. Han, S. Zhong, J.A. Elliott, L.F. Gladden, M. Evans, Y. Shen, J.A. Zeitler, Hardness and density distributions of pharmaceutical tablets measured by terahertz pulsed imaging. J. Pharm. Sci. 102, 2179–2186 (2013)

    Article  CAS  Google Scholar 

  20. T. Bardon, R.K. May, P.F. Taday, M. Strlič, Influence of particle size on optical constants from pellets measured with terahertz pulsed spectroscopy. IEEE Trans. Terahertz Sci. Technol. 6, 408–413 (2016)

    Article  ADS  CAS  Google Scholar 

  21. H. Namkung, J. Kim, H. Chung, M.A. Arnold, Impact of pellet thickness on quantitative terahertz spectroscopy of solid samples in a polyethylene matrix. Anal. Chem. 85, 3674–3681 (2013)

    Article  PubMed  CAS  Google Scholar 

  22. M. Chakraborty, P. Bawuah, N. Tan, T. Ervasti, P. Pääkkönen, J.A. Zeitler, J. Ketolainen, K.E. Peiponen, On the correlation of effective terahertz refractive index and average surface roughness of pharmaceutical tablets. J. Infrared Millimeter Terahertz Waves 37, 776–785 (2016)

    Article  Google Scholar 

  23. G. Alderborn, C. Nyström, Studies on direct compression of tablets XIV. The effect of powder fineness on the relation between tablet permeametrg surface area and compaction pressure. Powder Technol. 44(1), 37–42 (1985)

  24. C. Ridgway, P. Bawuah, D. Markl, J.A. Zeitler, J. Ketolainen, K.E. Peiponen, P. Gane, On the role of API in determining porosity, pore structure and bulk modulus of the skeletal material in pharmaceutical tablets formed with MCC as sole excipient. Int. J. Pharm. 526, 321–331 (2017)

    Article  PubMed  CAS  Google Scholar 

  25. A.L. Skelbæk-Pedersen, T.K. Vilhelmsen, J. Rantanen, P. Kleinebudde, The relevance of granule fragmentation on reduced tabletability of granules from ductile or brittle materials produced by roll compaction/dry granulation. Int. J. Pharm. 592, 120035 (2021)

    Article  PubMed  Google Scholar 

  26. T.D. Dorney, R.G. Baraniuk, D.M. Mittleman, Material parameter estimation with terahertz time-domain spectroscopy. J. Opt. Soc. Am. A 18(7), 1562–1571 (2001)

    Article  ADS  CAS  Google Scholar 

  27. L. Duvillaret, F. Garet, J. Coutaz, Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy. Appl. Opt. 38(2), 409–415 (1999)

    Article  ADS  PubMed  CAS  Google Scholar 

  28. M. Kashima, S. Tsuchikawa, T. Inagaki, Simultaneous detection of density, moisture content and fiber direction of wood by THz time-domain spectroscopy. J. Wood Sci. 66, 27 (2020)

    Article  Google Scholar 

  29. M. Reid, R. Fedosejevs, Terahertz birefringence and attenuation properties of wood and paper. Appl. Opt. 45, 2766–2772 (2006)

    Article  ADS  PubMed  Google Scholar 

  30. F. Garet, M. Hofman, J. Meilhan, F. Simoens, J. Coutaz, Evidence of Mie scattering at terahertz frequencies in powder materials. Appl. Phys. Lett. 105(3), 31106 (2014)

    Article  Google Scholar 

  31. H. Wang, Y. Horikawa, S. Tsuchikawa, T. Inagaki, Terahertz time-domain spectroscopy as a novel tool for crystallographic analysis in cellulose. Cellulose 27, 9767–9777 (2020)

    Article  CAS  Google Scholar 

  32. T. Ervasti, P. Silfsten, J. Ketolainen, K.E. Peiponen, A study on the resolution of a terahertz spectrometer for the assessment of the porosity of pharmaceutical tablets. Appl. Spectrosc. 66, 319–323 (2012)

    Article  ADS  PubMed  CAS  Google Scholar 

  33. V. Kumar, V. Cecconi, L. Peters, J. Bertolotti, A. Pasquazi, J.S.T. Gongora, M. Peccianti, Deterministic terahertz wave control in scattering media. ACS Photonics 9(8), 2634–2642 (2022)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. A.L. Skelbaek-Pedersen, M. Anuschek, T.K. Vilhelmsen, J. Rantanen, J.A. Zeitler, Non-destructive quantification of fragmentation within tablets after compression from scattering analysis of terahertz transmission measurements. Int. J. Pharm. 588, 119769 (2020)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China project, Grant number [TDNG2023102], the Key Project of Key Laboratory of Modern agricultural engineering of Tarim. University, Grant number [52305281], and Fundamental Research Funds for the Central Universities, Grant number [Z1090122067]. The authors appreciate the financial support provided by the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

YS: methodology, writing-original draft preparation, funding acquisition; YX: supervision, writing- revised manuscript; HW: conceptualization, methodology; TM: supervision; ST: writing-review and editing, methodology; TI: methodology, provision of experimental materials.

Corresponding author

Correspondence to Satoru Tsuchikawa.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Xu, Y., Wang, H. et al. Investigation of the effects of tableting parameters on reliable quantitative terahertz spectroscopy. Appl. Phys. A 130, 139 (2024). https://doi.org/10.1007/s00339-024-07302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07302-3

Keywords

Navigation