Skip to main content
Log in

Terahertz time-domain spectroscopy as a novel tool for crystallographic analysis in cellulose

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Terahertz (THz) radiation is responsive to optical phonons in crystal lattices; therefore, THz time-domain spectroscopy (THz-TDS) has potential utility in crystallographic analysis. In this study, THz-TDS was used to investigate cellulose samples extracted from different sources with varying ratios of Iα and Iβ fractions. This is the first study to report that the absorption coefficient in the THz region of cellulose Iα and Iβ presents different characteristic absorption peaks around 2 THz. This can be used to distinguish the cellulose I allomorph, which exhibits differences in its crystalline structure. The absorption coefficient at 2.11 and 2.38 THz showed a considerable linear correlation with the Iα fraction of the cellulose samples. The absorption coefficient spectra of 1.88–3.40 THz were further detrended and separated into three Gaussian peaks. The correlations between the parameters of these separated peaks (integrated intensities, peak positions) and the crystalline structural values (d-spacing, crystalline size, crystallinity index) that calculated from the X-ray diffraction (XRD) pattern were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

None.

Code availability

Matlab 2018b.

References

  • Agarwal UP, Ralph SA, Reiner RS, Baez C (2018) New cellulose crystallinity estimation method that differentiates between organized and crystalline phases. Carbohydr Polym 190:262–270

    Article  CAS  Google Scholar 

  • Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6:612–626

    Article  Google Scholar 

  • Belton PS, Tanner SF, Cartier N, Chanzy H (1989) High-resolution solid-state 13C nuclear magnetic resonance spectroscopy of tunicin, an animal cellulose. Macromolecules 22:1615–1617

    Article  CAS  Google Scholar 

  • Bishnoi A, Kumar S, Joshi N (2017) Wide-Angle X-ray Diffraction (WXRD). Elsevier 313:337. https://doi.org/10.1016/B978-0-323-46141-2.00009-2

    Article  Google Scholar 

  • Blackwell J, Vasko PD, Koenig JL (1970) Infrared and raman spectra of the cellulose from the cellwall of valonia ventricosa. J Appl Phys 41:4375–4379

    Article  CAS  Google Scholar 

  • Debzi EM, Chanzy H, Sugiyama J et al (1991) The Iα → Iβ Transformation of Highly Crystalline Cellulose by Annealing in Various Mediums. Macromolecules 24:6816–6822

    Article  CAS  Google Scholar 

  • Federici JF, Schulkin B, Huang F et al (2005) THz imaging and sensing for security applications - Explosives, weapons and drugs. Semicond Sci Technol 2(7):S266–S230

    Article  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Horii F, Hirai A, Kitamaru R (1987a) CP/MAS13C NMR spectra of the crystalline components of native celluloses. Macromolecules 20:2117–2120

    Article  CAS  Google Scholar 

  • Horii F, Yamamoto H, Kitamaru R et al (1987b) Transformation of Native Cellulose Crystals Induced by Saturated Steam at High Temperatures. Macromolecules 20:2946–2949

    Article  CAS  Google Scholar 

  • Horii F, Yamamoto H, Hirai A (1997) Microstructural Analysis of Microfibrils of Bacterial Cellulose. Macromol Symp 120:197–205

    Article  CAS  Google Scholar 

  • Horikawa Y (2017) Assessment of cellulose structural variety from different origins using near infrared spectroscopy. Cellulose 24:5313–5325

    Article  CAS  Google Scholar 

  • Horikawa Y, Sugiyama J (2009) Localization of crystalline allomorphs in cellulose microfibril. Biomacromol 10:2235–2239

    Article  CAS  Google Scholar 

  • Ikeda Y, Ishihara Y, Moriwaki T et al (2010) A novel analytical method for pharmaceutical polymorphs by terahertz spectroscopy and the optimization of crystal form at the discovery stage. Chem Pharm Bull 58:76–81

    Article  CAS  Google Scholar 

  • Imai T, Sugiyama J (1998) Nanodomains of Iα and Iβ cellulose in algal microfibrils. Macromolecules 31:6275–6279

    Article  CAS  Google Scholar 

  • Imai T, Sugiyama J, Itoh T, Horii F (1999) Almost pure Iα cellulose in the cell wall of Glaucocystis. J Struct Biol 127:248–257

    Article  CAS  Google Scholar 

  • Inagaki T, Ahmed B, Hartley ID et al (2014) Simultaneous prediction of density and moisture content of wood by terahertz time domain spectroscopy. J Infrared Millim Terahertz Waves 35:949–961

    Article  Google Scholar 

  • Larsson PT, Westermark U, Iversen T (1995) Determination of the cellulose Iα allomorph content in a tunicate cellulose by CP/MAS 13C-NMR spectroscopy. Carbohydr Res 278:339–343

    Article  CAS  Google Scholar 

  • Makarem M, Lee CM, Kafle K et al (2019) Probing cellulose structures with vibrational spectroscopy. Cellulose 26:35–79

    Article  CAS  Google Scholar 

  • Marchessault RH, Pearson FG, Liang CY (1960) Infrared spectra of crystalline polysaccharides. Biochem Biophys Acta 45:499–507

    Article  CAS  Google Scholar 

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249

    Article  CAS  Google Scholar 

  • O’sullvian AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  • Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10

    Article  Google Scholar 

  • Peccianti M, Fastampa R, Mosca Conte A et al (2017) Terahertz absorption by cellulose: application to ancient paper artifacts. Phys Rev Appl 7:1–7

    Article  Google Scholar 

  • Persson J, Chanzy H, Sugiyama J (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466

    Article  Google Scholar 

  • Reid M, Fedosejevs R (2006) Terahertz birefringence and attenuation properties of wood and paper. Appl Opt 45:2766–2772

    Article  Google Scholar 

  • Strachan CJ, Taday PF, Newnham DA et al (2005) Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity. J Pharm Sci 94:837–846

    Article  CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175

    Article  CAS  Google Scholar 

  • Taday PF, Bradley IV, Arnone DD, Pepper M (2003) Using terahertz pulse spectroscopy to study the crystalline structure of a drug: a case study of the polymorphs of ranitidine hydrochloride. J Pharm Sci 92:831–838

    Article  CAS  Google Scholar 

  • Takahashi M (2014) Terahertz vibrations and hydrogen-bonded networks in crystals. Crystals 4:74–103

    Article  Google Scholar 

  • Updegraff DM (1969) Semimicro determination of cellulose inbiological materials. Anal Biochem 32:420–424

    Article  CAS  Google Scholar 

  • VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17:1465–1472

    Article  CAS  Google Scholar 

  • Vieira FS, Pasquini C (2014) Determination of cellulose crystallinity by terahertz-time domain spectroscopy. Anal Chem 86:3780–3786

    Article  CAS  Google Scholar 

  • Wada M, Okano T (2001) Localization of Iα and Iβ phases in algal cellulose revealed by acid treatments. Cellulose 8:183–188

    Article  CAS  Google Scholar 

  • Wada M, Sugiyama J, Okano T (1993) Native celluloses on the basis of two crystalline phase (Iα/Iβ) system. J Appl Polym Sci 49:1491–1496

    Article  CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4:221–232

    Article  CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (2001) Allomorphs of native crystalline cellulose I evaluated by two equatorial d-spacings. J Wood Sci 47:124–128

    Article  CAS  Google Scholar 

  • Wang H, Inagaki T, Hartley ID et al (2019) Determination of dielectric function of water in thz region in wood cell wall result in an accurate prediction of moisture content. J Infrared Millim Terahertz Waves 40:673–687

    Article  CAS  Google Scholar 

  • Yamamoto H, Horii F (1993) CP/MAS 13C NMR analysis of the crystal transformation induced for valonia cellulose by annealing at high temperatures. Macromolecules 26:1313–1317

    Article  CAS  Google Scholar 

  • Zsigmondy R, Scherrer P (1912) Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchem Ein Lehrb 277:387–409

    Google Scholar 

Download references

Acknowledgments

The authors would like to express our grateful appreciation to Dr. J. Sugiyama of Kyoto University for the supplement of the cellulose samples. This work was supported by JSPS KAKENHI Grant Number 16H02559. And the first author also thanks for the Mitsutani scholarship for living support.

Funding

JSPS KAKENHI Grant Number 16H02559.

Author information

Authors and Affiliations

Authors

Contributions

Yoshiki Horikawa provided samples. Han Wang and Tetsuya Inagaki conceived and designed the experiments. Han Wang performed the experiments, analyzed the data and wrote the paper, Yoshiki Horikawa, Tetsuya Inagaki and Satoru Tsuchikawa gave final approval of the manuscript.

Corresponding author

Correspondence to Tetsuya Inagaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Horikawa, Y., Tsuchikawa, S. et al. Terahertz time-domain spectroscopy as a novel tool for crystallographic analysis in cellulose. Cellulose 27, 9767–9777 (2020). https://doi.org/10.1007/s10570-020-03508-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03508-9

Keywords

Navigation