Skip to main content
Log in

Study of electrical properties with temperature variation by complex impedance spectroscopy (CIS) and effects on the Ba2TiSi2O8–TiO2 matrix

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present work shows the dielectric properties of (100-X)Ba2TiSi2O8–(X)TiO2 composites (X in wt%) at radio frequency (RF) region (< 300 MHz). X-ray diffraction and Rietveld’s refinement showed the presence of Ba2(Ti7/9Si2/9)9O20 (BTSO) phase in the studied composites. To analyze the relationship between the electrical properties and the microstructure of the matrix and composites, Impedance spectroscopy (IS) was used. The applied model that best describes the behavior found in the samples is the Havriliak–Negami model. From the IS it was observed that the dielectric relative permittivity presented high values in BTS10 (X = 10%) and BTS20 (X = 20%) which allows classifying them as Colossal permittivity materials. This is an important result due to the potential for applications in new storage systems, capacitive devices and microelectronics. Nyquist diagrams were employed to evaluate the contribution of the grain and grain boundary in the electrical response of the samples and fitted employing an equivalent circuit with two associations of R-CPE (constant phase element). Temperature coefficient of capacitance (TCC) was also obtained and it was possible to observe that there was an increase in the TCC value for the compounds in all frequencies. In addition, IS demonstrated that the activation energy decreasing with TiO2 addition indicating a decrease in the resistive character of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier Science, 2008)

    Google Scholar 

  2. L.F. Chen, C.K. Ong, C.P. Neo, V.V. Varadan, V.K. Varadan, Microwave Electronics: Measurement and Materials Characterization (Wiley, 2004)

    Book  Google Scholar 

  3. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications (Wiley, Chichester, 2003)

    Book  Google Scholar 

  4. C. Yin, Z. Yu, L. Shu, L. Liu, Y. Chen, C. Li, J. Adv. Ceram. 10, 108 (2021)

    Article  CAS  Google Scholar 

  5. J. Sun, R. Ahmed, G.J. Wang, S.T. Wang, J. Wang, S.A. Suhaib, Y.M. Xie, H. Bi, C.C. Wang, J. Mater. Sci. 54, 6323 (2019)

    Article  ADS  CAS  Google Scholar 

  6. N. Humera, S. Riaz, N. Ahmad, F. Arshad, R. Zafar, S. Ali, S. Idrees, H. Noor, S. Atiq, and S. Naseem, J. Mater. Sci. Mater. Electron. (2020).

  7. Y. Wang, W. Jie, C. Yang, X. Wei, J. Hao, Adv. Funct. Mater., p. 1808118 (2019).

  8. J. Zheng, Q. Fu, X. Chen, C. Chakrabarti, P. Wang, H. Yin, C. Li, Y. Qiu, S. Yuan, J. Mater. Sci. Mater. Electron. 32, 290 (2021)

    Article  CAS  Google Scholar 

  9. Z. Wang, P. Peng, L. Zhang, N. Wang, B. Tang, B. Cui, J. Liu, D. Xu, J. Mater. Sci. Mater. Electron. 33, 6283 (2022)

    Article  CAS  Google Scholar 

  10. Y. Song, P. Liu, B. Guo, X. Cui, W. Yang, J. Am. Ceram. Soc. 103, 4313 (2020)

    Article  CAS  Google Scholar 

  11. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy, 3rd edn. (Wiley, Hoboken, 2018)

    Book  Google Scholar 

  12. Q. Shi, T.-J. Park, J. Schliesser, A. Navrotsky, B.F. Woodfield, J. Chem. Thermodyn.Thermodyn. 72, 77 (2014)

    Article  CAS  Google Scholar 

  13. S. Cao, B. Jiang, Y. Zheng, X. Tu, K. Xiong, P. Gao, E. Shi, J. Cryst. GrowthCryst. Growth 451, 207 (2016)

    Article  ADS  CAS  Google Scholar 

  14. C. Shen, H. Zhang, D. Wang, J. Wang, R.I. Boughton, Crystals (2017)

  15. M. Sahu, S. Mukherjee, M. Keskar, K. Krishnan, S. Dash, B.S. Tomar, Thermochim. Acta. Acta 663, 215 (2018)

    Article  CAS  Google Scholar 

  16. E.E. Abbott, M. Mann, J.W. Kolis, J. Solid State Chem. 184, 1257 (2011)

    Article  ADS  CAS  Google Scholar 

  17. S.K. Barbar, M. Roy, J. Mol. Struct.Struct. 1024, 132 (2012)

    Article  ADS  CAS  Google Scholar 

  18. C. Jiang, F. Chen, F. Yu, S. Tian, X. Cheng, S. Zhang, X. Zhao, Crystals 9, 11 (2019)

    Article  Google Scholar 

  19. S. Weber, A. Lebedinskaya, D. Rudsky, Y. Kabirov, A. Rudskaya, M. Kupriyanov, J. Adv. Dielectr. (2020).

  20. J.A.R. Lopez, L.M.A. Silva, H. Leon-Leon, M. Valverde-Alva, L. Korotkov, E. Rysiakiewicz-Pasek, N. Emelianov, AIP Conf. Proc., p. 050002 (2020)

  21. A.J. Vadim, F. LvovichWiley, Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena (Wiley, 2012)

    Google Scholar 

  22. J. Shukla, P. Saxena, P. Joshi, P. Joshi, A. Mishra, Appl. Phys. A 129, 731 (2023)

    Article  ADS  CAS  Google Scholar 

  23. R.K. Veena, A. Anand, M. Manjuladevi, V.S. Veena, J. Cyriac, N. Kalarikkal, S. Sagar, Appl. Phys. A. Phys. A 129, 598 (2023)

    Article  ADS  CAS  Google Scholar 

  24. K.C. Kao, Dielectric Phenomena in Solids (Elsevier Science, 2004)

    Google Scholar 

  25. S. Havriliak, S. Negami, Polymer (Guildf). 8, 161 (1967)

    Article  CAS  Google Scholar 

  26. P. Lunkenheimer, V. Bobnar, V. Bobnar, A.V. Pronin, A. V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B-Condens. Matter Mater. Phys. (2002).

  27. M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta Mater. (2011).

  28. R.F. Abreu, T.O. Abreu, D.M. da Colares, S.O. Saturno, J.P.C. do Nascimento, F.A.C. Nobrega, A. Ghosh, S.J.T. Vasconcelos, J.C. Sales, H.D. de Andrade, I.S.Q. Júnior, A.S.B. Sombra, J. Mater. Sci. Mater. Electron.. Mater. Sci. Mater. Electron. 32, 7034 (2021)

    Article  CAS  Google Scholar 

  29. J. Shen, J. Zhou, X. Cui, L. Li, J. Electroceramics 21, 565 (2008)

    Article  CAS  Google Scholar 

  30. B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436, 226 (2007)

    Article  CAS  Google Scholar 

  31. K.C. VaradaRajulu, B. Tilak, K. Sambasiva Rao, Appl. Phys. A 106, 533 (2012)

    Article  ADS  Google Scholar 

  32. B.C. Sutar, R.N.P. Choudhary, P.R. Das, Ceram. Int. 40, 7791 (2014)

    Article  CAS  Google Scholar 

  33. D.K. Kushvaha, B. Tiwari, S.K. Rout, J. Alloys Compd. 829, 154573 (2020)

    Article  CAS  Google Scholar 

  34. A. Lasia, Electrochemical Impedance Spectroscopy and Its Applications (2014)

  35. X.-Z. Yuan, C. Song, H. Wang, J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells (Springer London, London, 2010)

    Book  Google Scholar 

  36. R.F. Abreu, F.A.C. Nobrega, D.M. da Colares, S.O. Saturno, J.P.C. do Nascimento, T.O. Abreu, A. Ghosh, F.F. Carmo, M.A.S. Silva, A.J.M. Sales, R.S. Silva, A.S.B. Sombra, J. Mater. Sci. Mater. Electron.. Mater. Sci. Mater. Electron. 34, 457 (2023)

    Article  CAS  Google Scholar 

  37. C. Karthik, K.B.R. Varma, J. Phys. Chem. Solids 67, 2437 (2006)

    Article  ADS  CAS  Google Scholar 

  38. A.K. Jonscher, J. Phys. D Appl. Phys. 32, R57 (1999)

    Article  ADS  CAS  Google Scholar 

  39. T. Acharya, R.N.P. Choudhary, J. Electron. Mater. (2015).

  40. T. Acharya, R.N.P. Choudhary, Phys. Lett. A 380, 2437 (2016)

    Article  ADS  CAS  Google Scholar 

  41. K. Funke, Prog. Solid State Chem.. Solid State Chem. 22, 111 (1993)

    Article  CAS  Google Scholar 

  42. M.A.S. Silva, R.G.M. Oliveira, A.S.B. Sombra, Ceram. Int. 45, 20446 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly sponsored by the Brazilian Research Agencies CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant INCT NANO(BIO)SIMES), CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (grant Project PNPD), FUNCAP—Fundação Cearense de Apoio ao Desenvolvimento Cientifico e Tecnológico, FINEP—Financiadora de Estudos e Projetos (grants INFRAPESQ-11 and INFRAPESQ-12) and the U. S. Air Force Office of Scientific Research (AFOSR) (FA9550-16-1-0127).

Author information

Authors and Affiliations

Authors

Contributions

All the authors participated in the work, however some dedicated more time to some specific activities, which we describe below: conceptualization—RFA, JPCdN. Methodology—Software—DdMC, CS, FFdC. Validation—MASS, FFdC. Formal analysis—FACN, TOA. Investigation—SJTV, RFA. Resources—ASBS. Data curation—DZ, AG. Writing—original draft preparation—RFA, FEAN. Writing—review and editing—MASS, SOS, JPCdN. Visualization—FEN, DBdF. Supervision—SVT, MASS. Project administration—RSS, ASBS. Funding acquisition—ASBS.

Corresponding author

Correspondence to J. P. C. do Nascimento.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2509 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, R.F., Saturno, S.O., Nobrega, F.A.C. et al. Study of electrical properties with temperature variation by complex impedance spectroscopy (CIS) and effects on the Ba2TiSi2O8–TiO2 matrix. Appl. Phys. A 130, 138 (2024). https://doi.org/10.1007/s00339-024-07295-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07295-z

Keywords

Navigation