Skip to main content
Log in

Evaluation of dielectric properties of the barium titanium silicate (Ba2TiSi2O8) for microwave applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work presents the dielectric properties of Ba2TiSi2O8 in the Radiofrequency (RF) and Microwave (MW) regions. X-ray diffraction analysis showed that the material was obtained as a single-phase without the presence of spurious phases. Complex impedance spectroscopy demonstrated that there was no significant change of permittivity with temperature, whereas the dielectric loss was less than 1. Nyquist diagrams were modelled through an equivalent circuit using two associations of R-CPE related to the grain and the grain boundary effects. The MW analysis showed ε′r = 11.01 and tan δ = 4.55 × 10–2, values that are close to the results obtained in the RF region. Moreover, the τf value for Ba2TiSi2O8 was equal to − 47 ppm/°C which is close to the values adequate for a microwave device application. The numerical simulation demonstrated the operation of the material as a Dielectric Resonator Antenna (DRA), where a reflection coefficient below − 10 dB, a realised gain of 6.739 dBi, a bandwidth of 452.96 MHz and a radiation efficiency around 100% were observed. The results indicate that Ba2TiSi2O8 would be an interesting candidate in microwave operating devices in the C-band, as well as in devices operating in RF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Kajfez, P. Guillon, Dielectric Resonators, 2nd edn. (Noble Publishing Corporation Atalnta, Dedham, 1998).

    Google Scholar 

  2. M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier Science, Burlington, 2008).

    Google Scholar 

  3. A. Petosa, Dielectric Resonator Antenna Handbook (Artech House, Universidade de Michigan, Boston, 2007).

    Google Scholar 

  4. K.M. Luk, K.W. Leung, Dielectric Resonator Antennas 1st ed. (Research Studies Pr Ltd, Baldock, England, 2003).

  5. P.B.A. Fechine, G. Fontgalland, A.S.B. Sombra, 2016 IEEE Antennas Propag. Soc. Int. Symp. APSURSI 2016 - Proc. 1939 (2016)

  6. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications (Wiley, Chichester, 2003).

    Book  Google Scholar 

  7. D. Guha, Y.M.M. Antar, A. Ittipiboon, A. Petosa, D. Lee, IEEE Antennas Wirel. Propag. Lett. 5, 373 (2006)

    Article  Google Scholar 

  8. Y.-X. Guo, Y.-F. Ruan, X.-Q. Shi, IEEE Trans. Antennas Propag. 53, 3394 (2005)

    Article  Google Scholar 

  9. J.W.O. Bezerra, R.G.M. Oliveira, M.A.S. Silva, T.F. Maciel, J.C. Goes, A.S.B. Sombra, J. Electron. Mater. 47, 7272 (2018)

    Article  CAS  Google Scholar 

  10. J.E.V. de Morais, R.G.M. de Oliveira, A.J.N. de Castro, J.C. Sales, M.A.S. Silva, J.C. Goes, M.M. Costa, A.S.B. Sombra, J. Electron. Mater. 46, 5193 (2017)

    Article  CAS  Google Scholar 

  11. R.F. Abreu, S.O. Saturno, E.O. Sancho, D.X. Gouveia, A.S.B. Sombra, J. Electron. Mater. 48, 1196 (2019)

    Article  CAS  Google Scholar 

  12. J.T. Alfors, M.C. Stinson, R.A. Matthews, A. Pabst, Seven New Barium Minerals from Eastern Fresno County, California (1965)

  13. S.A. Markgraf, A. Halliyal, A.S. Bhalla, R.E. Newnham, C.T. Prewitt, Ferroelectrics 62, 17 (1985)

    Article  CAS  Google Scholar 

  14. R. Masse, J.-C. Grenier, A. Durif-Varambon, Bull. Soc. Française Minéral. Cristallogr. 90, 20 (1967)

    Article  CAS  Google Scholar 

  15. P.B. Moore, J. Louisnathan, Science 156, 1361 (1967)

    Article  CAS  Google Scholar 

  16. M. Kimura, K. Doi, S. Nanamatsu, T. Kawamura, Appl. Phys. Lett. 23, 531 (1973)

    Article  CAS  Google Scholar 

  17. S. Haussühl, J. Eckstein, K. Recker, F. Wallrafen, J. Cryst. Growth 40, 200 (1977)

    Article  Google Scholar 

  18. P.S. Bechthold, S. Haussühl, E. Michael, J. Eckstein, K. Recker, F. Wallrafen, Phys. Lett. A 65, 453 (1978)

    Article  Google Scholar 

  19. G. Blasse, J. Inorg. Nucl. Chem. 30, 2283 (1968)

    Article  CAS  Google Scholar 

  20. A. Halliyal, A.S. Bhalla, S.A. Markgraf, L.E. Cross, R.E. Newnham, Ferroelectrics 62, 27 (1985)

    Article  CAS  Google Scholar 

  21. H.M. Rietveld, Acta Crystallogr. 22, 151 (1967)

    Article  CAS  Google Scholar 

  22. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  CAS  Google Scholar 

  23. B.W. Hakki, P.D. Coleman, IEEE Trans. Microw. Theory Tech. 8, 402 (1960)

    Article  Google Scholar 

  24. W.E. Courtney, IEEE Trans. Microw. Theory Tech. 18, 476 (1970)

  25. L.F. Chen, C.K. Ong, C.P. Neo, V.V. Varadan, V.K. Varadan, Microwave Electronics: Measurement and Materials Characterization (Wiley, Hoboken, 2004).

    Book  Google Scholar 

  26. Y. Kobayashi, M. Katoh, IEEE Trans. Microw. Theory Tech. 33, 586 (1985)

    Article  Google Scholar 

  27. M.A.S. Silva, T.S.M. Fernandes, A.S.B. Sombra, J. Appl. Phys. 112, 074106 (2012)

    Article  CAS  Google Scholar 

  28. M.W. McAllister, S.A. Long, G.L. Conway, Electron. Lett. 19, 218 (1983)

    Article  Google Scholar 

  29. S. Long, M. McAllister, L. Shen, IEEE Trans. Antennas Propag. 31, 406 (1983)

    Article  Google Scholar 

  30. G. Drossos, Z. Wu, L.E. Davis, Microw. Opt. Technol. Lett. 13, 119 (1996)

    Article  Google Scholar 

  31. R.K. Mongia, P. Bhartia, Int. J. Microw. Millimeter‐Wave Comput. Eng. 4, 230 (1994)

  32. S.S. Rajput, S. Keshri, V.R. Gupta, N. Gupta, V. Bovtun, J. Petzelt, Ceram. Int. 38, 2355 (2012)

    Article  CAS  Google Scholar 

  33. Z. Peng, H. Wang, X. Yao, Ceram. Int. 30, 1211 (2004)

    Article  CAS  Google Scholar 

  34. S. Parida, S.K. Rout, L.S. Cavalcante, E. Sinha, M.S. Li, V. Subramanian, N. Gupta, V.R. Gupta, J.A. Varela, E. Longo, Ceram. Int. 38, 2129 (2012)

    Article  CAS  Google Scholar 

  35. R.F. Abreu, S.O. Saturno, J.P.C. do Nascimento, E.O. Sancho, J.E.V. de Morais, J.C. Sales, D.X. Gouveia, H.D. de Andrade, I.S. Queiroz Júnior, A.S.B. Sombra, J. Electromagn. Waves Appl. 34, 1705 (2020)

  36. A.A. Kishk, D. Kajfez, G.P. Junker, A.W. Glisson, Electron. Lett. 30, 97 (1994)

    Article  Google Scholar 

  37. G.P. Junker, A.A. Kishk, A.W. Glisson, D. Kajfez, Electron. Lett. 30, 177 (1994)

    Article  Google Scholar 

  38. G.P. Junker, A.A. Kishk, A.W. Glisson, IEEE Trans. Antennas Propag. 42, 960 (1994)

    Article  Google Scholar 

  39. J.-F. Kiang, Novel Technologies for Microwave and Millimeter—Wave Applications (Springer US, Boston, MA, 2004).

    Book  Google Scholar 

  40. A.J.M. Sales, B.M.G. Melo, S. Soreto Teixeira, S. Devesa, R.G.M. Oliveira, P.W.S. Oliveira, S.J.T. Vasconcelos, M.P.F. Graça, L.C. Costa, A.S.B. Sombra, Mater. Sci. Eng. B 263, 114880 (2021)

    Article  CAS  Google Scholar 

  41. S.J.T. Vasconcelos, M.A.S. Silva, R.G.M. de Oliveira, M.H.B. Junior, H.D. de Andrade, I.S.Q. Junior, C. Singh, A.S.B. Sombra, Mater. Chem. Phys. 257, 123239 (2021)

    Article  CAS  Google Scholar 

  42. J.R. Macdonald, E. Barsoukov, Impedance Spectroscopy Theory, Experiment, and Applications, 2nd edn. (Wiley, Hoboken, 2005).

    Google Scholar 

  43. K.C. Kao, Dielectric Phenomena in Solids (Elsevier Science, Burlington, 2004).

    Google Scholar 

  44. R.G.M. Oliveira, G.S. Batista, J.E.V. de Morais, M.M. Costa, M.A.S. Silva, J.W.O. Bezerra, A.S.B. Sombra, J. Mater. Sci. Mater. Electron. 29, 14557 (2018)

    Article  CAS  Google Scholar 

  45. J.P.C. do Nascimento, R.G.M. Oliveira, F.F. do Carmo, J.E.V. de Morais, J.C. Sales, M.A.S. Silva, D.X. Gouveia, H.D. de Andrade, I.S. Queiroz Júnior, A.S.B. Sombra, J. Electron. Mater. 49, 6016 (2020)

    Article  CAS  Google Scholar 

  46. R.G.M. Oliveira, D.B. Freitas, G.S. Batista, J.E.V. de Morais, V.C. Martins, M.M. Costa, M.A.S. Silva, D.X. Gouvêa, C. Singh, A.S.B. Sombra, J. Mater. Sci. Mater. Electron. 29, 16248 (2018)

    Article  CAS  Google Scholar 

  47. J.M.S. Filho, C.A. Rodrigues Junior, D.G. Sousa, R.G.M. Oliveira, M.M. Costa, G.C. Barroso, A.S.B. Sombra, J. Electron. Mater. 46, 4344 (2017)

    Article  CAS  Google Scholar 

  48. R.A. Silva, R.G.M. Oliveira, M.A.S. Silva, A.S.B. Sombra, Compos. B 176, 107286 (2019)

    Article  CAS  Google Scholar 

  49. V. Purohit, R. Padhee, R.N.P. Choudhary, Ceram. Int. 44, 3993 (2018)

    Article  CAS  Google Scholar 

  50. N. Bonanos, P. Pissis, J.R. Macdonald, Characterization of Materials (Wiley, Hoboken, NJ, 2012), pp. 1–14

    Google Scholar 

  51. A.J.V.F. Lvovich, Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena (Wiley, Hoboken, 2012).

    Book  Google Scholar 

  52. W. Wisniewski, K. Thieme, C. Rüssel, Prog. Mater. Sci. 98, 68 (2018)

    Article  CAS  Google Scholar 

  53. T. Asahi, T. Osaka, J. Kobayashi, S.C. Abrahams, S. Nanamatsu, M. Kimura, Phys. Rev. B 63, 094104 (2001)

    Article  CAS  Google Scholar 

  54. M. Naveed, M. Mumtaz, R. Khan, A.A. Khan, M.N. Khan, J. Alloys Compd. 712, 696 (2017)

    Article  CAS  Google Scholar 

  55. H. Fjeld, D.M. Kepaptsoglou, R. Haugsrud, T. Norby, Solid State Ion. 181, 104 (2010)

    Article  CAS  Google Scholar 

  56. X.-Z. Yuan, C. Song, H. Wang, J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells (Springer London, London, 2010).

    Book  Google Scholar 

  57. D.V.M. Paiva, M.A.S. Silva, R.G.M. de Oliveira, A.R. Rodrigues, L.M.U.D. Fechine, A.S.B. Sombra, P.B.A. Fechine, J. Alloys Compd. 783, 652 (2019)

    Article  CAS  Google Scholar 

  58. J. Shen, J. Zhou, X. Cui, L. Li, J. Electroceram. 21, 565 (2008)

    Article  CAS  Google Scholar 

  59. R.A.M. Osman, M.S. Idris, Adv. Mater. Res. 795, 640 (2013)

    Article  CAS  Google Scholar 

  60. C.A. Balanis, Antenna Theory: Analysis and Design, 4th edn. (Wiley, Hoboken, 2016).

    Google Scholar 

  61. C. Poole, I. Darwazeh, Microwave Active Circuit Analysis and Design, 1st edn. (Academic Press, New York, 2015).

    Google Scholar 

  62. D.M. Pozar, Microwave Engineering, 4th edn. (Wiley, Hoboken, 2011).

    Google Scholar 

  63. W.L. Stutzman, G.A. Thiele, Antenna Theory and Design, 3a (Wiley, Hoboken, 2012).

    Google Scholar 

  64. K. Chang, RF and Microwave Wireless Systems (Wiley, New York, 2000).

    Book  Google Scholar 

  65. R.G.M. Oliveira, D.B. Freitas, M.C. Romeu, M.A.S. Silva, A.J.M. Sales, A.C. Ferreira, J.M.S. Filho, A.S.B. Sombra, Microw. Opt. Technol. Lett. 58, 1211 (2016)

    Article  Google Scholar 

  66. D.V.M. Paiva, M.A.S. Silva, A.S.B. Sombra, P.B.A. Fechine, RSC Adv. 6, 42502 (2016)

    Article  CAS  Google Scholar 

  67. P.M.O. Silva, T.S.M. Fernandes, R.M.G. Oliveira, M.A.S. Silva, A.S.B. Sombra, Mater. Sci. Eng. B 182, 37 (2014)

    Article  CAS  Google Scholar 

  68. V.L. Bessa, J.E.V. De Morais, R.G.M. Oliveira, D.B. Freitas, J.C. Sales, F.F. Do Carmo, M.A.S. Silva, D.X. Gouveia, A.S.B. Sombra, J. Mater. Sci. Mater. Electron. 31, 22265 (2020)

Download references

Funding

This work was partly sponsored by the Brazilian Research Agencies CNPq-Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant INCT NANO(BIO)SIMES), CAPES- Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (Grant Project PNPD), FINEP-Financiadora de Estudos e Projetos (Grants INFRAPESQ-11 and INFRAPESQ-12), and the U. S. Air Force Office of Scientific Research (AFOSR) (FA9550-16-1-0127).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. F. Abreu or J. P. C. do Nascimento.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, R.F., Abreu, T.O., da M. Colares, D. et al. Evaluation of dielectric properties of the barium titanium silicate (Ba2TiSi2O8) for microwave applications. J Mater Sci: Mater Electron 32, 7034–7048 (2021). https://doi.org/10.1007/s10854-021-05414-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05414-7

Navigation