Skip to main content
Log in

Ablation morphology and characteristic analysis of anisotropic conductive film (ACF) using femtosecond lasers with NIR, Green, and DUV wavelengths for micro-LED display repair

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Anisotropic conductive film (ACF) is an electrical and electronic material composed of conductive balls embedded in a polymer matrix. ACF plays a crucial role in connecting electrodes and chips in Micro-LEDs. It serves as the target material in the repair process, enhancing production yield. For the application of ACF in the Micro-LED display repair process, flawless selective micro-ablation is essential. However, little research related to ACF micro-ablation has been conducted so far. In this study, we investigated a detailed analysis of the ablation area and defects in ACF by using femtosecond lasers with three different wavelengths: 1026 nm (NIR), 513 nm (Green), and 257 nm (DUV) for selective micro-ablation. By conducting a comparative analysis of these wavelengths, we determined that the optimal ablation results were achieved using a 257 nm wavelength femtosecond laser. These results exhibited no-defect, uniform, reproducible, and symmetrical ablation characteristic, making it suitable for the Micro-LED display repair process. This research is expected to establish the foundation for micro-ablation in all applications where ACF is employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. I. Mirza, N.M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, T. Mocek, Sci. Rep. 6, 39133 (2016)

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  2. N.N. Nedialkov, S.E. Imamova, P.A. Atanasov, J. Phys. D Appl. Phys. 37, 638 (2004)

    ADS  CAS  Google Scholar 

  3. D. Ashkenasi, G. Müller, A. Rosenfeld, R. Stoian, I.V. Hertel, N.M. Bulgakova, E.E.B. Campbell, Appl. Phys. A Mater. Sci. Process. 77, 223 (2003)

    ADS  CAS  Google Scholar 

  4. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)

    ADS  Google Scholar 

  5. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997)

    ADS  CAS  Google Scholar 

  6. K. Sugioka, Y. Cheng, Appl. Phys. Rev. 1, 041303 (2014)

    ADS  Google Scholar 

  7. K. Sugioka, Y. Cheng, Lab Chip 12, 3576 (2012)

    PubMed  CAS  Google Scholar 

  8. P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du, G. Mourou, Opt. Commun. 114, 106 (1995)

    ADS  CAS  Google Scholar 

  9. K. Sugioka, Y. Cheng, Light Sci. Appl. 3, e149 (2014)

    ADS  CAS  Google Scholar 

  10. Y. Yamamuro, T. Shimoyama, and J. Yan, Int. J. of Precis. Eng. Manuf.- Green Tech. 9, 619 (2022).

  11. B. Kim, H. K. Nam, S. Watanabe, S. Park, Y. Kim, Y. J. Kim, K. Fushinobu, and S. W. Kim, Int. J. of Precis. Eng. Manuf.- Green Tech. 8, 771 (2021).

  12. H. M. Lee, J. H. Choi, and S. J. Moon, Int. J. of Precis. Eng. Manuf.- Green Tech. 8, 375 (2021).

  13. Y.G. Shin, J. Choi, S.H. Cho, Appl. Phys. A 129, 534 (2023)

    ADS  CAS  Google Scholar 

  14. Y.G. Shin, S.Y. Ji, J. Choi, S.H. Cho, Appl. Phys. A 128, 828 (2022)

    CAS  Google Scholar 

  15. S.M. Chang, J.H. Jou, A. Hsieh, T.H. Chen, C.Y. Chang, Y.H. Wang, C.M. Huang, Microelectron. Reliab. 41, 2001 (2001)

    Google Scholar 

  16. K. Ishibashi, J. Kimura, IEEE Trans. Components Packag. Manuf. Technol. Part B 19, 752 (1996)

    CAS  Google Scholar 

  17. M.J. Yim, J.S. Hwang, J.G. Kim, J.Y. Ahn, H.J. Kim, W. Kwon, K.W. Paik, J. Electron. Mater. 33, 76 (2004)

    ADS  CAS  Google Scholar 

  18. S. Kim, Y. Kim, Curr. Appl. Phys. 13, S14 (2013)

    ADS  Google Scholar 

  19. Y. Huang, E.L. Hsiang, M.Y. Deng, S.T. Wu, Light Sci. Appl. 9, 105 (2020)

    ADS  PubMed Central  CAS  Google Scholar 

  20. T. Wu, C.W. Sher, Y. Lin, C.F. Lee, S. Liang, Y. Lu, S.W.H. Chen, W. Guo, H.C. Kuo, Z. Chen, Appl. Sci. 8, 1557 (2018)

    Google Scholar 

  21. Y. Huang, G. Tan, F. Gou, M.C. Li, S.L. Lee, S.T. Wu, J. Soc. Inf. Disp. 27, 387 (2019)

    Google Scholar 

  22. L.A. Harvilchuck, P.I. Presunka, J.H. Cconstable, IEEE Trans. Electron. Packag. Manuf. 23, 277 (2000)

    Google Scholar 

  23. J. Choi, S.H. Cho, Int. J. Precis. Eng. Manuf. 24, 1975 (2023)

    Google Scholar 

  24. J. Choi, K. Cho, S. Ji, W. Chang, S. Chang, S. Cho, J. Laser Micro Nanoeng. 18, 3 (2023)

    Google Scholar 

  25. Y. Shin, W. Choi, J. Choi, S. Cho, J. Micro Nano-Manuf. 9, 041002 (2021)

    CAS  Google Scholar 

  26. Y.G. Shin, J. Choi, S.H. Cho, Int. J. Precis. Eng. Manuf. 24, 547 (2023)

    Google Scholar 

  27. J. Bonse, S. Höhm, S.V. Kirner, A. Rosenfeld, J. Krüger, IEEE, J. Sel. Top. Quantum Electron. 23, 900615 (2017)

    Google Scholar 

  28. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, ACS Nano 3, 4062 (2009)

    PubMed  CAS  Google Scholar 

  29. J. Bonse, A. Rosenfeld, J. Krüger, J. Appl. Phys. 106, 104910 (2009)

    ADS  Google Scholar 

  30. J.M. Fernández-Prada, C. Florian, F. Caballero-Lucas, J.L. Morenza, P. Serra, Appl. Surf. Sci. 278, 185 (2013)

    ADS  Google Scholar 

  31. Y. Assaf, A.M. Kietzig, Mater. Today Commun. 14, 169 (2018)

    CAS  Google Scholar 

  32. S. Baudach, J. Bonse, J. Krüger, W. Kautek, Appl. Surf. Sci. 154, 555 (2000)

    ADS  Google Scholar 

  33. C. De Marco, S.M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, R. Osellame, A.C.S. Appl, Mater. Interfaces. 2, 2377 (2010)

    Google Scholar 

  34. L.F. Nassier, M.H. Shinen, Mater. Today Proc. 60, 1660 (2022)

    CAS  Google Scholar 

  35. K. Yin, C. Wang, X. Dong, Y. Song, Appl. Phys. A 122, 764 (2016)

    ADS  Google Scholar 

  36. F. Zhang, X. Dong, K. Yin, Y. Song, Y. Tian, C. Wang, J. Duan, Opt. Laser Technol. 100, 256 (2018)

    ADS  CAS  Google Scholar 

  37. R. K. Bedi, D. Pathak, Deepak, and D. Kaur, (Z. Kristallogr. Suppl. 27, 2008), p.177–183

  38. D. Pathak, S. Kumar, S. Andotra, J. Thomas, N. Kaur, P. Kumar, V. Kumar, Eur. Phys. J. Appl. Phys. 95, 10201 (2021)

    ADS  CAS  Google Scholar 

  39. http://www.hnshightech.com/

  40. J.M. Liu, R. Yen, H. Kurz, N. Bloembergen, Appl. Phys. Lett. 39, 755 (1981)

    ADS  CAS  Google Scholar 

  41. J.M. Liu, Opt. Lett. 7, 196 (1982)

    ADS  PubMed  CAS  Google Scholar 

  42. D. Bäuerle, M. Himmelbauer, E. Arenholz, J. Photochem. Photobiol. A Chem. 106, 27 (1997)

    Google Scholar 

  43. D. Pham, L. Tonge, J. Cao, J. Wright, M. Papiernik, E. Harvey, D. Nicolau, Smart Mater. Struct. 11, 668 (2002)

    ADS  CAS  Google Scholar 

  44. A.Y. Malyshev, N.M. Bityurin, Quantum. Elec. 35, 825 (2005)

    ADS  CAS  Google Scholar 

  45. C. Cheng, X. Xu, Phys. Rev. B 72, 165415 (2005)

    ADS  Google Scholar 

  46. J.P. Colombier, P. Combis, R. Stoian, E. Audouard, Phys. Rev. B 75, 104105 (2007)

    ADS  Google Scholar 

  47. F. Korte, S. Nolte, B.N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, H. Welling, Appl. Phys. A Mater. Sci. Process. 69, S7 (1999)

    ADS  CAS  Google Scholar 

  48. Y. Gan, J.K. Chen, J. Appl. Phys. 108, 103102 (2010)

    ADS  Google Scholar 

  49. T. Masubuchi, H. Furutani, H. Fukumura, H. Masuhara, ChemPhysChem 1, 137 (2000)

    PubMed  CAS  Google Scholar 

  50. T. Masubuchi, H. Furutani, H. Fukumura, H. Masuhara, J. Phys. Chem. B 105, 2518 (2001)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Junha Choi and Sung-Hak Cho conceived of the presented idea. Junha Choi developed the theory and performed the experiments. Junha Choi and Sung-Hak Cho verified the analytical methods. Kwangwoo Cho and Sung-Hak Cho encouraged Junha Choi to investigate the research and supervised the findings of this work. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Sung-Hak Cho.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Cho, K. & Cho, SH. Ablation morphology and characteristic analysis of anisotropic conductive film (ACF) using femtosecond lasers with NIR, Green, and DUV wavelengths for micro-LED display repair. Appl. Phys. A 130, 140 (2024). https://doi.org/10.1007/s00339-024-07287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07287-z

Keywords

Navigation