Skip to main content
Log in

Laser-assisted method for preparation of nanocomposites based on magnetite and noble metals for biomedical applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 04 March 2024

This article has been updated

Abstract

Pulsed laser ablation in liquids (PLAL) has been developed as a robust method for producing multi-element nanoparticles such as metal alloys. This has sparked considerable interest in furthering our knowledge of nanoparticle formation during PLAL, with the aim of improving control over product structure and broadening the variety of compositions achievable with this approach. In this paper, we present the fabrication of magneto-plasmonic nanoparticles based on Fe3O4/Au nanocomposite utilizing an infrared nanosecond laser for laser ablation in a liquid medium. This innovative and adaptable approach enables us to create multi-element nanosystems under non-equilibrium conditions. We thoroughly characterized the Fe3O4/Au nanocomposites using a variety of techniques, including electron microscopy, elemental analysis, X-ray diffraction, and ultraviolet–visible absorption spectroscopy. The XRD results revealed a crystalline structure composed of Au NPs and Fe3O4 NPs with no impurities present. Furthermore, increasing the laser energy also resulted in a red shift in the maximum exciton absorption (λmax), a result of the quantum confinement effect impacting the generation of electron–hole (e–h) carriers. Furthermore, our TEM images revealed a color gradient in the spherical shape, which became more pronounced with higher laser ablation power. Subsequently, we assessed the antibacterial activity of the synthesized Fe3O4/Au nanocomposite against five distinct species of bacteria using agar plate diffusion methods. This was followed by minimum inhibition concentration determination and measuring reactive oxygen species (ROS) within the treated bacterial pathogens. The findings of our research position identify laser-synthesized Fe3O4/Au nanocomposite structures as promising candidates for a variety of biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Change history

References

  1. S. Trukhanov, Peculiarities of the magnetic state in the system La 0.70 Sr 0.30 MnO 3− γ (0≤ γ≤ 0.25). J. Exp. Theor. Phys. 100, 95–105 (2005)

    Article  ADS  CAS  Google Scholar 

  2. S. Trukhanov, N. Kasper, I. Troyanchuk, M. Tovar, H. Szymczak, K. Bärner, Evolution of magnetic state in the La1− xCaxMnO3− γ (x= 0.30, 0.50) manganites depending on the oxygen content. J. Solid State Chem. 169, 85–95 (2002)

    Article  ADS  CAS  Google Scholar 

  3. I.O. Troyanchuk, S.V. Trukhanov, D.D. Khalyavin, H. Szymczak, Magnetic properties of anion deficit manganites Ln0.55Ba0.45MnO3−γ (Ln=La, Nd, Sm, Gd, γ⩽0.37). J. Magn. Magn. Mater. 208, 217–220 (2000)

    Article  ADS  CAS  Google Scholar 

  4. J. Singh, R.C. Singh, Tuning of structural, optical, dielectric and transport properties of Fe-doped ZnO: V system. Mater. Sci. Semicond. Process. 121, 105305 (2021)

    Article  CAS  Google Scholar 

  5. M.J. Tommalieh, H.A. Ibrahium, N.S. Awwad, A.A. Menazea, Gold nanoparticles doped polyvinyl alcohol/chitosan blend via laser ablation for electrical conductivity enhancement. J. Mol. Struct. 1221, 128814 (2020)

    Article  CAS  Google Scholar 

  6. M. Nasrollahzadeh, N. Shafiei, M. Eslamipanah, P. Fakhri, B. Jaleh, Y. Orooji, R.S. Varma, Preparation of Au nanoparticles by Q switched laser ablation and their application in 4-nitrophenol reduction. Clean Technol. Environ. Policy 22, 1715–1724 (2020)

    Article  CAS  Google Scholar 

  7. S.H. Lee, H.J. Jung, S.J. Lee, J. Theerthagiri, T.H. Kim, M.Y. Choi, Selective synthesis of Au and graphitic carbon-encapsulated Au (Au@GC) nanoparticles by pulsed laser ablation in solvents: Catalytic Au and acid-resistant Au@GC nanoparticles. Appl. Surf. Sci. 506, 145006 (2020)

    Article  CAS  Google Scholar 

  8. M. Vinod, K.G. Gopchandran, Bimetallic Au–Ag nanochains as SERS substrates. Curr. Appl. Phys. 15, 857–863 (2015)

    Article  ADS  Google Scholar 

  9. Z. Sheykhifard, M. Ranjbar, H. Farrokhpour, H. Salamati, Direct fabrication of Au/Pd (II) colloidal core-shell nanoparticles by pulsed laser ablation of gold in PdCl2 solution. The J of Phys Chem C 119, 9534–9542 (2015)

    Article  CAS  Google Scholar 

  10. L. Lascialfari, P. Marsili, S. Caporali, M. Muniz-Miranda, G. Margheri, A. Serafini, A. Brandi, E. Giorgetti, S. Cicchi, Carbon nanotubes/laser ablation gold nanoparticles composites. Thin Solid Films 569, 93–99 (2014)

    Article  ADS  CAS  Google Scholar 

  11. A.M. Mostafa, E.A. Mwafy, A. Toghan, ZnO nanoparticles decorated carbon nanotubes via pulsed laser ablation method for degradation of methylene blue dyes. Colloids Surf. A 627, 127204 (2021)

    Article  CAS  Google Scholar 

  12. A.M. Ismail, M.H. El-Newehy, M.E. El-Naggar, A. Meera Moydeen, A.A. Menazea, Enhancment the electrical conductivity of the synthesized polyvinylidene fluoride/polyvinyl chloride composite doped with palladium nanoparticles via laser ablation. J. Mater. Sci. Technol. 9, 11178–11188 (2020)

    CAS  Google Scholar 

  13. M. Dell’Aglio, V. Motto-Ros, F. Pelascini, I.B. Gornushkin, A. De Giacomo, Investigation on the material in the plasma phase by high temporally and spectrally resolved emission imaging during pulsed laser ablation in liquid (PLAL) for NPs production and consequent considerations on NPs formation. Plasma Sources Sci. Technol. 28, 085017 (2019)

    Article  ADS  Google Scholar 

  14. M. DellʼAglio, R. Gaudiuso, O. De Pascale, A. De Giacomo, Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production. Appl. Surf. Sci. 348, 4–9 (2015)

    Article  Google Scholar 

  15. H. El-Saied, A.M. Mostafa, M.S. Hasanin, E.A. Mwafy, A.A. Mohammed, Synthesis of antimicrobial cellulosic derivative and its catalytic activity. J. King Saud Univ. Sci. 32, 436–442 (2020)

    Article  Google Scholar 

  16. E.A. Mwafy, M.S. Hasanin, A.M. Mostafa, Cadmium oxide/TEMPO-oxidized cellulose nanocomposites produced by pulsed laser ablation in liquid environment: Synthesis, characterization, and antimicrobial activity. Opt. Laser Tech. 120, 105744 (2019)

    Article  CAS  Google Scholar 

  17. V.S. Benitha, K. Jeyasubramanian, R. Mala, G.S. Hikku, R. Rajesh Kumar, New sol–gel synthesis of NiO antibacterial nano-pigment and its application as healthcare coating. J Coatings Technol Res. 16, 59–70 (2019)

    Article  CAS  Google Scholar 

  18. S. Abu-Melha, Z.A. Muhammad, A.S. Abouzid, M.M. Edrees, A.S.A. Dena, S. Nabil, S.M. Gomha, Multicomponent synthesis, DFT calculations and molecular docking studies of novel thiazolyl-pyridazinones as potential antimicrobial agents against antibiotic-resistant bacteria. J. Mol. Struct. 1234, 130180 (2021)

    Article  CAS  Google Scholar 

  19. S. Abu-Melha, S.M. Gomha, A.S. Abouzied, M.M. Edrees, A.S. Abo Dena, Z.A. Muhammad, Microwave-assisted one pot three-component synthesis of novel bioactive thiazolyl-pyridazinediones as potential antimicrobial agents against antibiotic-resistant bacteria. Molecules 26, 4260 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. S. Ibrahim, H. El Saied, M. Hasanin, Active paper packaging material based on antimicrobial conjugated nano-polymer/amino acid as edible coating. J King Saud Univ-Sci 31, 1095–1102 (2018)

    Article  Google Scholar 

  21. V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Coll. Interface. Sci. 145, 83–96 (2009)

    Article  CAS  Google Scholar 

  22. R.M. Kassab, S.M. Gomha, S.A. Al-Hussain, A.S.A. Dena, M.M. Abdel-Aziz, M.E. Zaki, Z.A. Muhammad, Synthesis and in-silico studies of new bis-thiazole derivatives and their preliminary antimicrobial activity. Arab. J. Chem. 14, 103396 (2021)

    Article  CAS  Google Scholar 

  23. K. Kawaguchi, J. Jaworski, Y. Ishikawa, T. Sasaki, N. Koshizaki, Preparation of gold/iron-oxide composite nanoparticles by a unique laser process in water. J. Magn. Magn. Mater. 310, 2369–2371 (2007)

    Article  ADS  CAS  Google Scholar 

  24. P. Wagener, J. Jakobi, C. Rehbock, V.S.K. Chakravadhanula, C. Thede, U. Wiedwald, M. Bartsch, L. Kienle, S. Barcikowski, Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles. Sci. Rep. 6, 23352 (2016)

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  25. A.S. Wasfi, H.R. Humud, N.K. Fadhil, Synthesis of core-shell Fe3O4-Au nanoparticles by electrical exploding wire technique combined with laser pulse shooting. Optics Laser Technology 111, 720–726 (2019)

    Article  ADS  CAS  Google Scholar 

  26. M. Al-Kinani, A. Haider, S. Al-Musawi, Design and synthesis of nanoencapsulation with a new formulation of [email protected] nps by pulsed laser ablation in liquid (PLAL) method in breast cancer therapy in vitro and in vivo. Plasmonics 4, 1107–1117 (2021)

    Article  Google Scholar 

  27. O.Y. Griaznova, I.B. Belyaev, A.S. Sogomonyan, I.V. Zelepukin, G.V. Tikhonowski, A.A. Popov, A.S. Komlev, P.I. Nikitin, D.A. Gorin, A.V. Kabashin, S.M. Deyev, Laser synthesized core-satellite fe-au nanoparticles for multimodal in vivo imaging and in vitro photothermal therapy. Pharmaceutics 14, 994 (2022)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. N.H. A-Jarah, A.S. Wasfi, S.M. Hamidi, Tunable random lasing in Au@Fe3O4, Fe3O4@Au core shell nanoparticles under external magnetic field. Optics Laser Technol. 153, 108266 (2022)

    Article  CAS  Google Scholar 

  29. A. Basagni, V. Torresan, P. Marzola, M.B.F. van Raap, L. Nodari, V. Amendola, Structural evolution under physical and chemical stimuli of metastable Au–Fe nanoalloys obtained by laser ablation in liquid. Faraday Discuss. 242, 286–300 (2023)

    Article  PubMed  ADS  CAS  Google Scholar 

  30. I. Mukha, O. Chepurna, N. Vityuk, A. Khodko, L. Storozhuk, V. Dzhagan, D.R. Zahn, V. Ntziachristos, A. Chmyrov, T.Y.J.N. Ohulchanskyy, Multifunctional magneto-plasmonic Fe3O4/Au nanocomposites: approaching magnetophoretically-enhanced photothermal therapy. Nanomaterials 11, 1113 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. A.M. Mostafa, E.A. Mwafy, Synthesis of ZnO and Au@ZnO core/shell nano-catalysts by pulsed laser ablation in different liquid media. J. Mater. Sci. Technol. 9, 3241–3248 (2020)

    CAS  Google Scholar 

  32. A.M. Mostafa, S.A. Yousef, W.H. Eisa, M.A. Ewaida, E.A. Al-Ashkar, Au@ CdO core/shell nanoparticles synthesized by pulsed laser ablation in Au precursor solution. Appl. Phys. A 123, 774 (2017)

    Article  ADS  CAS  Google Scholar 

  33. A.M. Mostafa, E.A. Mwafy, The effect of laser fluence for enhancing the antibacterial activity of NiO nanoparticles by pulsed laser ablation in liquid media. Environ Nanotechnol Monit Manag. 14, 100382 (2020)

    Google Scholar 

  34. M. Abdelraof, M.S. Hasanin, M.M. Farag, H.Y. Ahmed, Green synthesis of bacterial cellulose/bioactive glass nanocomposites: effect of glass nanoparticles on cellulose yield, biocompatibility and antimicrobial activity. Int. J. Biol. Macromol. 138, 975–985 (2019)

    Article  PubMed  CAS  Google Scholar 

  35. N. Elsayed, M.S. Hasanin, M. Abdelraof, Utilization of olive leaves extract coating incorporated with zinc/selenium oxide nanocomposite to improve the postharvest quality of green beans pods. Bioactive Carbohydr Dietary Fibre 28, 100333 (2022)

    Article  CAS  Google Scholar 

  36. A.M. Mostafa, E.A. Mwafy, M.S. Hasanin, One-pot synthesis of nanostructured CdS, CuS, and SnS by pulsed laser ablation in liquid environment and their antimicrobial activity. Opt. Laser Tech. 121, 105824 (2020)

    Article  CAS  Google Scholar 

  37. E.A. Mwafy, M.S. Hasanin, A.M. Mostafa, Cadmium oxide/TEMPO-oxidized cellulose nanocomposites produced by pulsed laser ablation in liquid environment: Synthesis, characterization, and antimicrobial activity. Opt. Laser Technol. 120, 105744 (2019)

    Article  CAS  Google Scholar 

  38. G. Bhardwaj, T.J. Webster, Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO2 surface treatment. Int. J. Nanomed. 207, 363–369 (2017)

    Article  CAS  Google Scholar 

  39. M. Seong, D.G. Lee, Reactive oxygen species-independent apoptotic pathway by gold nanoparticles in Candida albicans. Microbiol. Res. 207, 33–40 (2018)

    Article  PubMed  CAS  Google Scholar 

  40. S. Khan, M. Rayis, A. Rizvi, M.M. Alam, M. Rizvi, I. Naseem, ROS mediated antibacterial activity of photoilluminated riboflavin: a photodynamic mechanism against nosocomial infections. Toxicol. Rep. 6, 136–142 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. M. Abdelraof, M. Fikry, A.H. Hashem, M.E. El-Naggar, H.R. Rashdan, Insight into novel anti-mucormycosis therapies: investigation of new anti-mucormycosis laser-induced photodynamic therapy based on a sulphone bis-compound loaded silica nanoemulsion. RSC Adv. 13, 20684–20697 (2023)

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  42. X. Quan, R. Han, Y. Shao, K. Niu, Effect of hollow glass beads on density and mechanical properties of silicone rubber composites. J. Appl. Polym. Sci. 138, 49865 (2021)

    Article  CAS  Google Scholar 

  43. A.S. Altowyan, A.M. Mostafa, H.A. Ahmed, Effect of liquid media and laser energy on the preparation of Ag nanoparticles and their nanocomposites with Au nanoparticles via laser ablation for optoelectronic applications. Optik 241, 167217 (2021)

    Article  ADS  CAS  Google Scholar 

  44. M. Abdel-Baki, A.M. Mostafa, A. Fayad, G.T. El-Bassyouni, G.M. Turky, Improving the optical, electrical, and dielectric characteristics of MgO doped borate glass for optoelectronic applications. J. Appl. Phys. (2023). https://doi.org/10.1063/5.0136730

    Article  Google Scholar 

  45. Y. Pepe, A. Karatay, Y.O. Donar, A. Sınağ, H. Unver, A. Elmali, Tuning the energy bandgap and nonlinear absorption coefficients of CdO nanocomposite films with doping and annealing process. Opt. Mater. 103, 109880 (2020)

    Article  CAS  Google Scholar 

  46. H. Ali, A.M. Alsmadi, B. Salameh, M. Mathai, M. Shatnawi, N.M.A. Hadia, E.M.M. Ibrahim, Influence of nickel doping on the energy band gap, luminescence, and magnetic order of spray deposited nanostructured ZnO thin films. J. Alloy. Compd. 816, 152538 (2020)

    Article  CAS  Google Scholar 

  47. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys Status solidi. 15, 627–637 (1966)

    Article  CAS  Google Scholar 

  48. A. Dolgonos, T.O. Mason, K.R. Poeppelmeier, Direct optical band gap measurement in polycrystalline semiconductors: a critical look at the Tauc method. J. Solid State Chem. 240, 43–48 (2016)

    Article  ADS  CAS  Google Scholar 

  49. Y. Bao, H. Calderon, K.M. Krishnan, Synthesis and characterization of magnetic-optical Co− Au core− shell nanoparticles. J. Phys. Chem. C 111, 1941–1944 (2007)

    Article  CAS  Google Scholar 

  50. O. Solodova, A. Sokolov, O. Ivanova, M. Volochaev, I. Lapin, D. Goncharova, V. Svetlichnyi, Magneto-optical properties of nanoparticle dispersions based on Fe3O4, obtained by pulse laser ablation in a liquid. J. Solid State Phys. 64, 2334 (2022)

    Article  Google Scholar 

  51. I.S. Zhidkov, E.Z. Kurmaev, S.O. Cholakh, E. Fazio, L. Durso, XPS study of interactions between linear carbon chains and colloidal Au nanoparticles. Mendeleev Commun. 30, 285–287 (2020)

    Article  CAS  Google Scholar 

  52. J. Wang, P. He, C. Chen, Y. Shao, J. Han, Y. Gao, Nonlinear absorption and the ultrafast dynamic process of Au-Ag nanoshuttles. OSA Continuum 3, 2485–2492 (2020)

    Article  CAS  Google Scholar 

  53. U. Holzwarth, N. Gibson, The Scherrer equation versus the’Debye-Scherrer equation’. Nat. Nanotechnol. 6, 534–534 (2011)

    Article  PubMed  ADS  CAS  Google Scholar 

  54. M. Mokhtar Mohamed, G. Osman, K.S. Khairou, Fabrication of Ag nanoparticles modified TiO2–CNT heterostructures for enhanced visible light photocatalytic degradation of organic pollutants and bacteria. J. Environ. Chem. Eng. 3, 1847–1859 (2015)

    Article  CAS  Google Scholar 

  55. M. Rai, A. Yadav, A.J.B.A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76–83 (2009)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Research Center (NRC) of Egypt (Project No. 13020306).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis.

Corresponding author

Correspondence to Ayman M. Mostafa.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article, affiliations 2 and 3 were interchanged due to a publisher’s mistake.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 289 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakaria, M.A., Abdelraof, M., El-Gebaly, R.H. et al. Laser-assisted method for preparation of nanocomposites based on magnetite and noble metals for biomedical applications. Appl. Phys. A 130, 132 (2024). https://doi.org/10.1007/s00339-024-07283-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07283-3

Keywords

Navigation