Skip to main content
Log in

Enhanced performance of Pb/FeSe2 interfaces designed for electrical applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, iron selenide layers are deposited onto glass and lead substrates to perform as terahertz filters. The layers are deposited by the thermal evaporation technique under a vacuum pressure of 10–5 mbar. Glass/FeSe2 (GFS) and Pb/FeSe2 (PFS) films are structurally, morphologically and electrically characterized. The atomic composition of the GFS films contained excess selenium that reacted with Pb forming a PbSe layer. This layer induced the crystallinity of iron selenide. The preferred crystal structure of FeSe2 was cubic with cell parameters of \(a = b = c = 3.04\) Å and space group \(Pm3m\). Lead substrates increased the room temperature electrical conductivity of GFS films from of 1.52 \(\times 10^{ - 5} (\Omega \;{\text{cm}})^{ - 1}\) to 6.88 \(\times 10^{ - 2} (\Omega \;{\text{cm}})^{ - 1}\). Analyses of the electrical conduction mechanism in the temperature range of 25–330 K have shown that coating the films onto Pb substrates shifted the accepter level from 182 to 58 meV, decreased the degree of structural disorder, shorten the average hopping range from 59 to 19 Å and increased the density of localized states near Fermi level by two orders of magnitude. The conductivity of PFS films exhibited degenerate semiconductor characteristics in the temperature range of 120–28 K. This feature is followed by an evidence of exhibiting superconductivity at critical temperatures lower than 24 K. On the other hand the impedance spectroscopy measurements in the driving signal frequency domain of 0.01–1.0 GHz have shown that Pb/FeSe2/Ag interfaces can perform as band filters showing microwave cutoff frequency values reaching 100 GHz at driving signal frequency of 1.0 GHz. These band filters are ideal for 6G technology nominating PFS films for high frequency applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Huang, Q. He, W. Chen, J. Zai, Q. Qiao, X. Qian, 3D hierarchical FeSe2 microspheres: controlled synthesis and applications in dye-sensitized solar cells. Nano Energy 15, 205–215 (2015)

    CAS  Google Scholar 

  2. H. Huan, Y. Xue, B. Zhao, H. Bao, L. Liu, Z. Yang, Tunable Weyl half-semimetals in two-dimensional iron-based materials M FeSe (M = Tl, In, Ga). Phys. Rev. B 106(12), 125404 (2022)

    ADS  CAS  Google Scholar 

  3. D. Qiu, A. Gao, W. Zhao, Z. Sun, B. Zhang, Xu. Junjie, T. Shen, J. Wang, Z. Fang, Y. Hou, Fast-charging degradation mechanism of two-dimensional FeSe anode in sodium-ion batteries. ACS Energy Lett. 8, 4052–4060 (2023)

    CAS  Google Scholar 

  4. D. Scarpa, C. Cirillo, E. Ponticorvo, C. Cirillo, C. Attanasio, M. Iuliano, M. Sarno, Iron selenide particles for high-performance supercapacitors. Materials 16(15), 5309 (2023)

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  5. J.P. Rodriguez, D.S. Inosov, J. Zhao, High-Tc superconductivity in electron-doped iron selenide and related compounds. Front. Phys. 10, 885420 (2022)

    Google Scholar 

  6. X. Jiao, D. Wenfeng, S. Mingxia, W. Heng, D. Cui, W. Zhongxu, G. Guanming et al., Significantly enhanced superconductivity in monolayer FeSe films on SrTiO3 (001) via metallic δ-doping. Natl. Sci. Rev. (2023). https://doi.org/10.1093/nsr/nwad213

    Article  PubMed  PubMed Central  Google Scholar 

  7. S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda, R. Arita, T. Nojima, A. Tsukazaki, Y. Iwasa, Giant thermoelectric power factor in ultrathin FeSe superconductor. Nat. Commun. 10(1), 825 (2019)

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  8. A. Zhao, Gu. Yan, Y. Lang, L. Pan, Y. Wang, Enhanced thermoelectric performance of n-type PbSe by pyrite FeSe2 alloying. J. Alloy. Compd. 941, 169008 (2023)

    CAS  Google Scholar 

  9. S.Y. Song, J. Seo, Local magnetism induced by non-magnetic impurities in FeSe in proximity to s-wave superconductivity. Appl. Phys. Lett. 119(5), 052601 (2021)

    ADS  CAS  Google Scholar 

  10. F.G. Harvel, M. Lemon, R.N. Gannon, S.P. Rudin, L. Ping, H.R. Blackwood, D.C. Johnson, 1T-FeSe2 layers in (PbSe) 1+ δ (FeSe2) n─an interlayer-stabilized 2D structure. Chem. Mater. 35(18), 7521–7528 (2023)

    CAS  Google Scholar 

  11. S. Thanikaikarasan, R. Perumal, E. Thanikaivelan, T. Ahamad, S.M. Alshehri, Thickness, structure, composition and optical properties of electrochemically grown iron selenide and iron diselenide thin films. J. New Mater. Electrochem. Syst. (2023). https://doi.org/10.14447/jnmes.v26i2.a01

    Article  Google Scholar 

  12. Q.A. Fayez, A.J. Toubasi, Enhanced crystallinity, optical conductivity and terahertz cutoff frequency of stacked layers of FeSe2 by Al nanosheets. Optik 287, 171173 (2023)

    ADS  Google Scholar 

  13. B. Ouertani, H. Boughzala, B. Theys, H. Ezzaouia, Ru-substitution effect on the FeSe2 thin films properties. J. Alloy. Compd. 871, 159490 (2021)

    CAS  Google Scholar 

  14. A.L.H. Khalid, A.F. Qasrawi, Synthesis of copper nanosheets coatings onto glass and Glass/CrSe2 substrates using ion coating technique for terahertz technology. Cryst. Res. Technol. 58(12), 2300231 (2023)

    Google Scholar 

  15. L. Hao, M. Zhou, Y. Song, X. Ma, Wu. Jiang, Q. Zhu, Fu. Zaiguo, Y. Liu, G. Hou, T. Li, Tin-based perovskite solar cells: further improve the performance of the electron transport layer-free structure by device simulation. Sol. Energy 230, 345–354 (2021)

    ADS  CAS  Google Scholar 

  16. M. Abirami, G. Sivakumar, K. Mohanraj, Influence of equimolar concentration on structural and optical properties of binary selenides nanoparticles. Partic. Sci. Technol. 32(4), 392–398 (2014)

    Google Scholar 

  17. Materials project. https://doi.org/10.17188/1195266.https://next-gen.materialsproject.org/materials/mp-20120

  18. M.M. Shivastava, O.N. Srivastava, Studies of structural transformations and electrical behaviour of FeSe films. Thin Solid Films 29(2), 275–284 (1975)

    ADS  Google Scholar 

  19. V.E. Ceniceros-Orozco, J. Escorcia-García, C.A. Gutiérrez-Chavarría, V. Agarwal, H. Uriel López-Herrera, Orange-reddish photoluminescence enhancement and wollastonite nanocrystals formation induced by CaO in Sm3+-doped calcium sodium borosilicate glasses. Ceram. Int. 48(10), 14537–14549 (2022)

    CAS  Google Scholar 

  20. A. Amjad Salamah, M.A. Qasrawi, L.H.K. Alfhaid, Optical properties of chromium-selenide films designed for terahertz applications. Optik (2023). https://doi.org/10.1016/j.ijleo.2023.171395

    Article  Google Scholar 

  21. H. Zhengyong, Y. Zhang, H. Wang, J. Li, Improved electrical resistivity-temperature characteristics of oriented hBN composites for inhibiting temperature-dependence DC surface breakdown. Appl. Phys. Lett. (2023). https://doi.org/10.1063/5.0166638

    Article  Google Scholar 

  22. J. Wang, Z. Pan, Y. Wang, L. Wang, Su. Lihong, D. Cuiuri, Y. Zhao, H. Li, Evolution of crystallographic orientation, precipitation, phase transformation and mechanical properties realized by enhancing deposition current for dual-wire arc additive manufactured Ni-rich NiTi alloy. Addit. Manuf. 34, 101240 (2020)

    CAS  Google Scholar 

  23. Z. Tu, Q. Li, Su. Xi, Wu. Hao, C. Liu, Phase transformation from FeSe to Fe3Se4. J. Alloy. Compd. 934, 168045 (2023)

    CAS  Google Scholar 

  24. Y. Xu, F.W. Schwartz, Lead immobilization by hydroxyapatite in aqueous solutions. J. Contam. Hydrol. 15(3), 187–206 (1994)

    ADS  CAS  Google Scholar 

  25. Y. Chen, G. Wang, L. Song, X. Shen, J. Wang, J. Huo, R. Wang, Xu. Tiefeng, S. Dai, Q. Nie, Unraveling the crystallization kinetics of supercooled liquid GeTe by ultrafast calorimetry. Cryst. Growth Des. 17(7), 3687–3693 (2017)

    CAS  Google Scholar 

  26. O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, K. Tsuzaki, Y. Watanabe, Microstructural evolution in a commercial Al–Mg–Sc alloy during ECAP at 300 °C. Mater. Sci. Forum 558, 569–574 (2007). (Trans Tech Publications Ltd)

    Google Scholar 

  27. M.M. Alkhamisi, H.K. Khanfar, A.F. Qasrawi, S.E. Algarni, Growth and characterization of PbSe microcrystals via the pulsed laser welding technique. Appl. Phys. A 128(12), 1106 (2022)

    ADS  CAS  Google Scholar 

  28. T. Abachi, J.C. Bernède, A. Khelil, N. Hamdadou, Conductivity of thin polycrystalline of FeSe2 synthesized by various selenization processes. Phys. Chem. News 50, 98–103 (2009)

    CAS  Google Scholar 

  29. W. Kuang, H. Wang, X. Li, J. Zhang, Q. Zhou, Y. Zhao, Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-CX alloys: Modeling and applications. Acta Mater. 159, 16–30 (2018)

    ADS  CAS  Google Scholar 

  30. C. Solis, M.D. Rossell, G. Garcia, G. Van Tendeloo, J. Santiso, Unusual strain accommodation and conductivity enhancement by structure modulation variations in Sr4Fe6O12+ δ epitaxial films. Adv. Funct. Mater. 18(5), 785–793 (2008)

    CAS  Google Scholar 

  31. Y. Zhao, K. Liu, H. Zhang, X. Tian, Q. Jiang, V. Murugadoss, H. Hou, Dislocation motion in plastic deformation of nano polycrystalline metal materials: a phase field crystal method study. Adv. Compos. Hybrid Mater. 5(3), 2546–2556 (2022)

    CAS  Google Scholar 

  32. M. Shahnawaz, Study of the effects of Ni+ ion implantation on morphology, structure, hardness, and electrical conductivity of brass. Surf. Interface Anal. 53(7), 627–636 (2021)

    CAS  Google Scholar 

  33. R.A. Almotiri, A.F. Qasrawi, B.S. Agha, Enhancement of the electrical properties of Au/MgSe/Au microwave resonators via pulsed laser welding of MgSe and Au nanosheets. Appl. Phys. A 129(4), 289 (2023)

    ADS  CAS  Google Scholar 

  34. F. Babbe, H. Elanzeery, M.H. Wolter, K. Santhosh, S. Siebentritt, The hunt for the third acceptor in CuInSe2 and Cu (In, Ga) Se2 absorber layers. J. Phys.: Condens. Matter 31(42), 425702 (2019)

    ADS  PubMed  CAS  Google Scholar 

  35. F. Bou-Elfotouh, D.J. Dunlavy, T.J. Coutts, Intrinsic defect states in CuInSe2 single crystals. Solar Cells 27(1–4), 237–246 (1989)

    Google Scholar 

  36. A.M. Ziqan, A.F. Qasrawi, A.H. Mohammad, N.M. Gasanly, Bull. Mater. Sci. 38, 593–598 (2015). https://doi.org/10.1007/s12034-015-0869-0

    Article  CAS  Google Scholar 

  37. N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials (Oxford University Press, Oxford, 2012)

    Google Scholar 

  38. Q. Atef Fayez, M.K.N. Abuarra, Electrical properties of amorphous Cu doped InSe thin films. Appl. Phys. A 129(9), 664 (2023)

    Google Scholar 

  39. M.A.M. Khan, M. Zulfequar, A. Kumar, M. Husain, Conduction mechanism in amorphous Se75In25−xPbx films. Mater. Chem. Phys. 87(1), 179–183 (2004)

    Google Scholar 

  40. A.F. Qasrawi, H.D. Aloushi, In situ observation of heat-assisted hexagonal-orthorhombic phase transitions in Se/Ag/Se sandwiched structures and their effects on optical properties. J. Electron. Mater. 48(12), 7906–7914 (2019)

    ADS  CAS  Google Scholar 

  41. M. Kimia, P. Cao, Y. Won, Molecular dynamics investigation of water behavior through nanopores. In: International Electronic Packaging Technical Conference and Exhibition, vol. 84041, p. V001T03A007. American Society of Mechanical Engineers (2020)

  42. R.A. Jishi, M.S. Dresselhaus, Electron-phonon coupling strength and implications for superconductivity in alkali-metal-doped fullerenes. Phys. Rev. B 45(5), 2597 (1992)

    ADS  CAS  Google Scholar 

  43. A.F. Qasrawi, W.S. Ghannam, SeO2 microwires designed as low-temperature abrupt microelectronic switches, negative resistance, and negative dielectric constant sources. Physica Status Solidi (a) 219(24), 2200200 (2022)

    ADS  CAS  Google Scholar 

  44. M.H.K. Rubel, M.A. Hossain, M. Khalid Hossain, K.M. Hossain, A.A. Khatun, M.M. Rahaman, M.F. Rahman, M.M. Hossain, J. Hossain, First-principles calculations to investigate structural, elastic, electronic, thermodynamic, and thermoelectric properties of CaPd3B4O12 (B= Ti, V) perovskites. Results Phys. 42, 105977 (2022)

    Google Scholar 

  45. V.A. Vlasenko, K.S. Pervakov, Y.F. Eltsev, V.D. Berbentsev, A.S. Tsapleva, P.A. Lukyanov, I.M. Abdyukhanov, V.M. Pudalov, Critical current and microstructure of FeSe wires and tapes prepared by PIT method. IEEE Trans. Appl. Supercond. 29(3), 1–5 (2019)

    Google Scholar 

  46. Bin Lei, J.H. Cui, Z.J. Xiang, N.Z. Chao Shang, G.J. Wang, X.G. Ye, Tao Wu Luo, Zhe Sun, X.H. Chen, Evolution of high-temperature superconductivity from a low-T c phase tuned by carrier concentration in FeSe thin flakes. Phys. Rev. Lett. 116(7), 077002 (2016)

    ADS  PubMed  CAS  Google Scholar 

  47. L. Ghosh, M. Alam, M. Singh, S. Dixit, S.V. Kumar, A. Verma, P. Shahi et al., Anharmonic phonon interactions and the Kondo effect in a FeSe/Sb2Te3/FeSe heterostructure: a proximity effect between ferromagnetic chalcogenide and di-chalcogenide. Nanoscale 14(30), 10889–10902 (2022)

    PubMed  CAS  Google Scholar 

  48. A. Martin, M. Kjellberg, W. Mao, J.W. Ringsberg, Prediction of roll motion using fully nonlinear potential flow and Ikeda's method. In ISOPE International Ocean and Polar Engineering Conference, pp. ISOPE-I. ISOPE (2021)

  49. A.F. Qasrawi, Optically controlled n−Si/p−SeO2/p−SiO2 microwave resonators designed for 5G/6G communication technology. Phys. Scr. 98(9), 095925 (2023)

    ADS  Google Scholar 

  50. M. Kim, G. Ducournau, S. Skrzypczak, S.J. Yang, P. Szriftgiser, N. Wainstein, K. Stern et al., Monolayer molybdenum disulfide switches for 6G communication systems. Nat. Electron. 5(6), 367–373 (2022)

    CAS  Google Scholar 

  51. J. Zhangsheng, C. Xu, Disrupting the technology innovation efficiency of manufacturing enterprises through digital technology promotion: an evidence of 5G technology construction in China. IEEE Trans. Eng. Manag. (2023)

  52. T. Kawamura, H. Shimotahira, A. Otani, Novel tunable filter for millimeter-wave spectrum analyzer over 100 GHz. IEEE Trans. Instrum. Meas. 63(5), 1320–1327 (2014)

    ADS  Google Scholar 

  53. L. Kong, G. Liu, Synchrotron-based infrared microspectroscopy under high pressure: an introduction. Matter Radiat. Extrem. 6(6), 068202–068202 (2021)

    CAS  Google Scholar 

  54. J. Kang, Y. An, J. Xue, X. Ma, J. Li, F. Chen, S. Wang, He. Wan, C. Zhang, Bu. Xianzhong, Density functional theory study of the electronic structures of galena. Processes 11(2), 619 (2023)

    CAS  Google Scholar 

  55. Z.Y. Zhu, Y.L. Liu, G.Q. Gou, W. Gao, J. Chen, Effect of heat input on interfacial characterization of the butter joint of hot-rolling CP-Ti/Q235 bimetallic sheets by Laser+ CMT. Sci. Rep. 11(1), 10020 (2021)

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  56. Z.H. Fu, B.J. Yang, M.L. Shan, T. Li, Z.Y. Zhu, C.P. Ma, X. Zhang, G.Q. Gou, Z.R. Wang, W. Gao, Hydrogen embrittlement behavior of SUS301L-MT stainless steel laser-arc hybrid welded joint localized zones. Corros. Sci. 164, 108337 (2020)

    CAS  Google Scholar 

  57. A.F. Qasrawi, L.O.A. Samen, S.S. Atari, Properties of (Glass, Pb)/MgSe interfaces designed as terahertz band filters. Brazi. J. Phys. 53(2), 51 (2023)

    ADS  CAS  Google Scholar 

  58. M. Salek, 3-D Printed microwave and tetrahertz passive components. PhD diss. University of Birmingham (2019)

  59. Y. Zhang, P. Zhao, L. Qin, Y. Zhang, H. Lei, Y. Chen, Y. Huang, Y. Jijun, Functional additive manufacturing of large-size metastructure with efficient electromagnetic absorption and mechanical adaptation. Compos. Part A Appl. Sci. Manuf. (2023). https://doi.org/10.1016/j.compositesa.2023.107652

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under Grant No. (UJ-23-DR-131). Therefore, the authors thank the University of Jeddah for its technical and financial support.

Funding

This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under Grant No. (UJ-23-DR-131). Therefore, the authors thank the University of Jeddah for its technical and financial support.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Seham Alharbi have shared in the review article collection, wins the fund, analyzed the X-ray data in Fig. 1a and estimated the acceptor levels in the material. Dr. Sabah also handled literature survey and wined the fund. Qasrawi AF leaded the work, measured the data and analyzed or shared analyses of the data in all figures. He carried out the analyses and edited the article.

Corresponding author

Correspondence to A. F. Qasrawi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

All authors participated in the work.

Consent for publication

All authors agree to publish this article in the Journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, S.R., Qasrawi, A.F. & Algarni, S.E. Enhanced performance of Pb/FeSe2 interfaces designed for electrical applications. Appl. Phys. A 130, 142 (2024). https://doi.org/10.1007/s00339-023-07268-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07268-8

Keywords

Navigation