Skip to main content
Log in

Hydrothermally synthesised highly stable binary ZnNbS composite with carbon nanotubes to enhance the redox active sites in energy storage devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Energy storage devices have attained a lot of interest because of the large demand for energy in the present era. Carbon nanotubes have attained huge interest in energy applications because of their extraordinary conductivity, sensitivity, and storage capability. In this work, the zinc niobium sulfide (ZnNbS) is synthesized using the hydrothermal method. A remarkable value of the specific capacity (Cs) of 1054.21 Cg−1 is obtained, which is comparatively better than the reference sample. Besides, the CNTs-doped ZnNbS and activated carbon (ZnNbS/CNT//AC) are utilised to design the hybrid supercapacitor. The hybrid device showed a high value of Cs of 196.1 Cg−1 at 2 Ag−1. Further, the hybrid supercapacitor exhibited an improved value of energy density (39.4 WhKg−1) and power density (2400 WKg−1), which is much improved compared to the previously reported values. To check the stability of the device, it is measured up to 5000 charging/discharging cycles. The device showed 95% of capacity retention. Our findings provide a new platform for designing high-performance supercapattery-type energy storage devices. The doping of CNT in sulfide-based materials opens new possibilities to design high performance energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data is available on request.

References

  1. M.A. Mumtaz, A.M. Afzal, M.W. Iqbal, A.A. Ifseisi, S. Mumtaz, M. Imran, M. Usman, Z. Hussain, M.H. Waris, P. Lamichhane, Enhancing the charge transfer and redox characteristics in energy storage devices with a layered ZnNbS@ graphene nanocomposite electrode material for biomedical application. Diamond Relat. Mater. 140, 110519 (2023)

    ADS  Google Scholar 

  2. Y. Gogotsi, P. Simon, True performance metrics in electrochemical energy storage. Science 334(6058), 917–918 (2011)

    ADS  Google Scholar 

  3. R. Khan, A.M. Afzal, Z. Hussain, M.W. Iqbal, M. Imran, M.H. Waris, M.A. Mumtaz, M. Usman, S.M. Wabaidur, E.A. Al-Ammar, S. Mumtaz, MnNbS/polyaniline composite-based electrode material for high-performance energy storage hybrid supercapacitor device. Phys. Status Solidi A 220(15), 2300200 (2023)

    ADS  Google Scholar 

  4. C. Zhao, X. Yin, Z. Guo, D. Zhao, G. Yang, A. Chen, L. Fan, Y. Zhang, N. Zhang, High lithiophilic nitrogen-doped carbon nanotube arrays prepared by in-situ catalyze for lithium metal anode. Chin. Chem. Lett. 32(7), 2254–2258 (2021)

    Google Scholar 

  5. Z. Huang, P. Luo, H. Zheng, Z. Lyu, X. Ma, Novel one-dimensional V3S4@NC nanofibers for sodium-ion batteries. J. Phys. Chem. Solids 172, 111081 (2023)

    Google Scholar 

  6. L. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nanomaterials for advanced energy conversion and storage. Small 8(8), 1130–1166 (2012)

    ADS  Google Scholar 

  7. J. Wang, H. Tang, L. Zhang, H. Ren, R. Yu, Q. Jin, J. Qi, D. Mao, M. Yang, Y. Wang, P. Liu, Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nat. Energy 1(5), 1–9 (2016)

    ADS  Google Scholar 

  8. Y. Liu, B. Fan, B. Xu, B. Yang, Ambient-stable polyethyleneimine functionalized Ti3C2Tx nanohybrid corrosion inhibitor for copper in alkaline electrolyte. Mater. Lett. 337, 133979 (2023)

    Google Scholar 

  9. P.C. Chen, G. Shen, Y. Shi, H. Chen, C. Zhou, Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 4(8), 4403–4411 (2010)

    Google Scholar 

  10. P. Yang, W. Mai, Flexible solid-state electrochemical supercapacitors. Nano Energy 8, 274–290 (2014)

    Google Scholar 

  11. Y. Wang, G. Cao, Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 20(12), 2251–2269 (2008)

    Google Scholar 

  12. Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8(3), 702–730 (2015)

    Google Scholar 

  13. D. Jain, S.A. Hashmi, A. Kaur, Surfactant assisted polyaniline nanofibres—reduced graphene oxide (SPG) composite as electrode material for supercapacitors with high rate performance. Electrochim. Acta 222, 570–579 (2016)

    Google Scholar 

  14. J.W. Lee, T. Ahn, J.H. Kim, J.M. Ko, J.D. Kim, Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochim. Acta 56(13), 4849–4857 (2011)

    Google Scholar 

  15. Q.T. Xu, H.G. Xue, S.P. Guo, Facile preparation of FeS@GO and its outstanding electrochemical performances for lithium storage. Inorg. Chem. Front. 5(10), 2540–2545 (2018)

    Google Scholar 

  16. Q.T. Xu, H.G. Xue, S. P. G, FeS2 walnut-like microspheres wrapped with rGO as anode material for high-capacity and long-cycle lithium-ion batteries. Electrochim. Acta 292, 1–9 (2018)

    Google Scholar 

  17. B. Liu, H. Zhou, H. Jin, J. Zhu, Z. Wang, C. Hu, L. Liang, S. Mu, D. He, A new strategy to access Co/N co-doped carbon nanotubes as oxygen reduction reaction catalysts. Chin. Chem. Lett. 32(1), 535–538 (2021)

    Google Scholar 

  18. Q. Lu, J.G. Chen, J.Q. Xiao, Nanostructured electrodes for high-performance pseudocapacitors. Angew. Chem. Int. Ed. 52(7), 1882–1889 (2013)

    ADS  Google Scholar 

  19. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011)

    ADS  Google Scholar 

  20. Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016)

    Google Scholar 

  21. Z. Lin, E. Goikolea, A. Balducci, K. Naoi, P.L. Taberna, M. Salanne, G. Yushin, P. Simon, Materials for supercapacitors: when Li-ion battery power is not enough. Mater. Today 21(4), 419–436 (2018)

    Google Scholar 

  22. H.U. Hassan, M.W. Iqbal, A.M. Afzal, T. Abbas, A. Zaka, A. Yasmeen, N.A. Noor, S. Aftab, H. Ullah, Highly stable binary composite of nickel silver sulfide (NiAg2S) synthesized using the hydrothermal approach for high-performance supercapattery applications. Int. J. Energy Res. 46(8), 11346–11358 (2022)

    Google Scholar 

  23. M. Bhushan, R. Jha, R. Sharma, R. Bhardwaj, Ethylenediamine-assisted growth of multi-dimensional ZnS nanostructures and study of its charge transfer mechanism on supercapacitor electrode and photocatalytic performance. Nanotechnol. 31(23), 235602 (2020)

    ADS  Google Scholar 

  24. R. Balu, S. Sagadevan, A. Dakshanamoorthy, A cost effective, facile hydrothermal approach of zinc sulfide decorated on graphene nanocomposite for supercapacitor applications. J. Nanosci. Nanotechnol. 19(11), 6987–6994 (2019)

    Google Scholar 

  25. Y. Zhao, H. Yuan, X. Zhang, G. Xue, J. Tang, Y. Chen, X. Zhang, W. Zhou, H. Liu, Laser-assisted synthesis of cobalt@ N-doped carbon nanotubes decorated channels and pillars of wafer-sized silicon as highly efficient three-dimensional solar evaporator. Chin. Chem. Lett. 32(10), 3090–3094 (2021)

    Google Scholar 

  26. Y. Li, X. Xia, W. Hou, H. Lv, J. Liu, X. Li, How effective are metal nanotherapeutic platforms against bacterial infections? A comprehensive review of literature. Int. J. Nanomed. 18, 1109–1128 (2023)

    Google Scholar 

  27. A. Arulraj, N. Ilayaraja, V. Rajeshkumar, M. Ramesh, Direct synthesis of cubic shaped Ag2S on Ni mesh as binder-free electrodes for energy storage applications. Sci. Rep. 9(1), 1–8 (2019)

    Google Scholar 

  28. M. Qu, Z. Chen, Z. Sun, D. Zhou, W. Xu, H. Tang, H. Gu, T. Liang, P. Hu, G. Li, Y. Wang, Rational design of asymmetric atomic Ni-P1N3 active sites for promoting electrochemical CO2 reduction. Nano Res. 16(2), 2170–2176 (2023)

    ADS  Google Scholar 

  29. M.Z. Iqbal, S. Zakar, S.S. Haider, A.M. Afzal, M.J. Iqbal, M.A. Kamran, A. Numan, Electrodeposited CuMnS and CoMnS electrodes for high-performance asymmetric supercapacitor devices. Ceram. Int. 46(13), 21343–21350 (2020)

    Google Scholar 

  30. N.S. Arul, L.S. Cavalcante, J.I. Han, Facile synthesis of ZnS/MnS nanocomposites for supercapacitor applications. J. Solid State Electrochem. 22(1), 303–313 (2018)

    Google Scholar 

  31. Y. Hou, Q. Wang, S. Wang, M. Wang, X. Chen, X. Hou, Hydrophilic carbon nanotube membrane enhanced interfacial evaporation for desalination. Chin. Chem. Lett. 33(4), 2155–2158 (2022)

    Google Scholar 

  32. Z. Xin, X. Zhao, H. Ji, T. Ma, H. Li, S. Zhong, Z. Shen, Amorphous carbon-linked TiO2/carbon nanotube film composite with enhanced photocatalytic performance: the effect of interface contact and hydrophilicity. Chin. Chem. Lett. 32(7), 2151–2154 (2021)

    Google Scholar 

  33. H. Zhang, Y. Xiao, Z. Xu, M. Yang, L. Zhang, L. Yin, S. Chai, G. Wang, L. Zhang, X. Cai, Effects of Ni-decorated reduced graphene oxide nanosheets on the microstructural evolution and mechanical properties of Sn-3.0 Ag-0.5 Cu composite solders. Intermetallics 150, 107683 (2022)

    Google Scholar 

  34. X. Hou, T. Peng, J. Cheng, Q. Yu, R. Luo, Y. Lu, X. Liu, J.K. Kim, J. He, Y. Luo, Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor. Nano Res. 10(8), 2570–2583 (2017)

    Google Scholar 

  35. K. Huang, Q. Xu, Q. Ying, B. Gu, W. Yuan, Wireless strain sensing using carbon nanotube composite film. Compos. B 256, 110650 (2023)

    Google Scholar 

  36. H. Pan, J. Li, Y. Feng, Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 5(3), 654–668 (2010)

    ADS  Google Scholar 

  37. B. Han, J. Jiang, Q. Yan, Z. Xin, Q. Yan, One-step straightfoward solid synthesis of high yield white fluorescent carbon dots for white light emitting diodes. Chin. Chem. Lett. 32(2), 591–593 (2021)

    Google Scholar 

  38. M. Shi, R. Wang, L. Li, N. Chen, P. Xiao, C. Yan, X. Yan, Redox-active polymer integrated with MXene for ultra-stable and fast aqueous proton storage. Adv. Funct. Mater. 33(1), 2209777 (2023)

    Google Scholar 

  39. M.N. Shaddad, M.A. Ghanem, A.M. Al-Mayouf, S. Gimenez, J. Bisquert, I. Herraiz-Cardona, Cooperative catalytic effect of ZrO2 and α-Fe2O3 nanoparticles on BiVO4 photoanodes for enhanced photoelectrochemical water splitting. Chemsuschem 9(19), 2779–2783 (2016)

    Google Scholar 

  40. C.L. Liang, K. Zhong, M. Liu, L. Jiang, S.K. Liu, D.D. Xing, H.Y. Li, Y. Na, W.X. Zhao, Y.X. Tong, P. Liu, Synthesis of morphology-controlled silver nanostructures by electrodeposition. Nano Micro Lett. 2(1), 6–10 (2010)

    Google Scholar 

  41. X. Chen, H. Lin, J. Deng, Y. Zhang, X. Sun, P. Chen, X. Fang, Z. Zhang, G. Guan, H. Peng, Electrochromic fiber-shaped supercapacitors. Adv. Mater. 26(48), 8126–8132 (2014)

    Google Scholar 

  42. W. Lei, J.L. Xiao, H.P. Liu, Q.L. Jia, H.J. Zhang, Tungsten disulfide: synthesis and applications in electrochemical energy storage and conversion. Tungsten 2(3), 217–239 (2020)

    Google Scholar 

  43. J.M. Schnorr, T.M. Swager, Emerging applications of carbon nanotubes. Chem. Mater. 23(3), 646–657 (2011)

    Google Scholar 

  44. Y. Xu, J. Wang, W. Sun, S. Wang, Capacitance properties of poly(3,4-ethylenedioxythiophene)/polypyrrole composites. J. Power. Sources 159, 370–373 (2006)

    ADS  Google Scholar 

  45. M.Z. Iqbal, M.M. Faisal, S.R. Ali, S. Farid, A.M. Afzal, Co-MOF/polyaniline-based electrode material for high performance supercapattery devices. Electrochim. Acta 346, 136039 (2020)

    Google Scholar 

  46. M. Imran, M.H. Waris, R. Khan, A.M. Afzal, M.W. Iqbal, M.A. Mumtaz, A.A. Ghfar, A. Ali, S. Mumtaz, Z. Hussain, High-performance energy storage hybrid supercapacitor device based on NiCoS@ CNT@ graphene composite electrode material. Phys. Scr. 98(11), 115981 (2023)

    ADS  Google Scholar 

  47. H. Wan, X. Ji, J. Jiang, J. Yu, L. Miao, L. Zhang, S. Bie, H. Chen, Y. Ruan, Hydrothermal synthesis of cobalt sulfide nanotubes: the size control and its application in supercapacitors. J. Power. Sources 243, 396–402 (2013)

    ADS  Google Scholar 

  48. M.S. Javed, S. Dai, M. Wang, D. Guo, L. Chen, X. Wang, C. Hu, Y. Xi, High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres. J. Power. Sources 285, 63–69 (2015)

    ADS  Google Scholar 

  49. S.S. Pujari, S.A. Kadam, Y.R. Ma, P.K. Katkar, S.J. Marje, S.A. Khalate, A.C. Lokhande, U.M. Patil, Facile synthesis of microstrip-like copper phosphate hydroxide thin films for supercapacitor applications. J. Electron. Mater. 49(6), 3890–3901 (2020)

    ADS  Google Scholar 

  50. A. Agarwal, B.R. Sankapal, Ultrathin Cu2P2O7 nanoflakes on stainless steel substrate for flexible symmetric all-solid-state supercapacitors. Chem. Eng. J. 422, 130131 (2021)

    Google Scholar 

  51. S. Li, Y. Ruan, Q. Xie, Morphological modulation of NiCo2Se4 nanotubes through hydrothermal selenization for asymmetric supercapacitor. Electrochim. Acta 356, 136837 (2020)

    Google Scholar 

  52. Y. Cao, B. Lin, Y. Sun, H. Yang, X. Zhang, Symmetric/asymmetric supercapacitor based on the perovskite-type lanthanum cobaltate nanofibers with Sr-SUBSTITUTION. Electrochim. Acta 178, 398–406 (2015)

    Google Scholar 

  53. Y. Zhong, X. Cao, Y. Liu, L. Cui, J. Liu, Nickel cobalt manganese ternary carbonate hydroxide nanoflakes branched on cobalt carbonate hydroxide nanowire arrays as novel electrode material for supercapacitors with outstanding performance. J. Colloid Interface Sci. 581, 11–20 (2021)

    ADS  Google Scholar 

  54. L. Yue, S. Zhang, H. Zhao, Y. Feng, M. Wang, L. An, X. Zhang, J. Mi, One-pot synthesis CoFe2O4/CNTs composite for asymmetric supercapacitor electrode. Solid State Ionics 329, 15–24 (2019)

    Google Scholar 

Download references

Acknowledgements

The work was supported by Researchers Supporting Project number (RSP2023R492), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

AMA and MA worked on the experiment and interpretation of results. AMA, MA performed the calculation and wrote the manuscript. AMA, MA, MWI, MH, MZ, MUUI, and MU, AN, SMW, EAAl-A, SM helped during the calculation process and reviewed the manuscript.

Corresponding author

Correspondence to Amir Muhammad Afzal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The submitted work should be original and should not have been published elsewhere in any form or language. It is confirmed that the work is original, unpublished, and not being considered elsewhere. The article has been written by the stated authors who are all aware of its content and approve its submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3058 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mumtaz, M.A., Afzal, A.M., Iqbal, M.W. et al. Hydrothermally synthesised highly stable binary ZnNbS composite with carbon nanotubes to enhance the redox active sites in energy storage devices. Appl. Phys. A 130, 29 (2024). https://doi.org/10.1007/s00339-023-07169-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07169-w

Keywords

Navigation