Skip to main content
Log in

Temperature-dependent magnetoelectric response of lead-free Na0.4K0.1Bi0.5TiO3/NiFe2O4-laminated composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study investigates the temperature-dependent quasi-static magnetoelectric (ME) response (αE) of electrically poled lead-free Na0.4K0.1Bi0.5TiO3–NiFe2O4 (NKBT–NFO)-laminated composites. The aim is to understand the temperature stability of ME-based sensors and devices. The relaxor ferroelectric nature of NKBT is confirmed through impedance and polarization–electric (PE) hysteresis loop studies, with a depolarization temperature (Td) of approximately 110 °C. Heating causes a decrease and disappearance of planar electromechanical coupling (Kp), charge coefficient (d31), and remnant polarization (Pr) above Td. The temperature rise to 125 °C also leads to a reduction in magnetostriction (λ) and magnetostriction coefficient (q = dλ/dH) of NFO by approximately 33% and 25%, respectively. At room temperature, the bilayer and trilayer configurations exhibit maximum ME responses of approximately 33 mV/cm·Oe and 80 mV/cm·Oe, respectively, under low magnetic field conditions (H ∼ 300–450 Oe). The ME response of NKBT/NFO is highly sensitive to temperature, decreasing with heating in accordance with the individual temperature-dependent properties of NKBT and NFO. This study demonstrates a temperature window for the effective utilization of NKBT/NFO-based laminated composite ME devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Research data policy and data availability

The data generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. (2008). https://doi.org/10.1063/1.2836410

    Article  Google Scholar 

  2. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  ADS  Google Scholar 

  3. N.A. Spaldin, R. Ramesh, Nat. Mater. 18, 203 (2019)

    Article  Google Scholar 

  4. X. Liang, H. Chen, N.X. Sun, APL Mater. (2021). https://doi.org/10.1063/5.0044532

    Article  Google Scholar 

  5. N. Ortega, A. Kumar, J.F. Scott, R.S. Katiyar, J. Phys. Condens. Matter 27, 504002 (2015)

    Article  Google Scholar 

  6. G. Srinivasan, S. Priya, N. Sun, Composite Magnetoelectrics: Materials, Structures, and Applications (Elsevier Science, New York, 2015)

    Google Scholar 

  7. G. Srinivasan, Annu. Rev. Mater. Res. 40, 153 (2010)

    Article  ADS  Google Scholar 

  8. J. Zhai, Z. Xing, S. Dong, J. Li, D. Viehland, J. Am. Ceram. Soc. 91, 351 (2008)

    Article  Google Scholar 

  9. L. Eric Cross, in Ferroelectr. Ceram. (Birkhäuser Basel, Basel, 1993), p. 1–85.

  10. X. Liang, C. Dong, H. Chen, J. Wang, Y. Wei, M. Zaeimbashi, Y. He, A. Matyushov, C. Sun, N. Sun, Sensors (Switzerland) 20, 1532 (2020)

    Article  ADS  Google Scholar 

  11. M.J. Goodfriend, K.M. Shoop, J. Intell. Mater. Syst. Struct. 3, 245 (1992)

    Article  Google Scholar 

  12. M. Otoničar, S.D. Škapin, M. Spreitzer, D. Suvorov, J. Eur. Ceram. Soc. 30, 971 (2010)

    Article  Google Scholar 

  13. T. Karthik, S. Asthana, Mater. Lett. 190, 273 (2017)

    Article  Google Scholar 

  14. G. Das Adhikary, D.K. Khatua, A. Senyshyn, R. Ranjan, Phys. Rev. B 99, 174112 (2019)

    Article  ADS  Google Scholar 

  15. G. Das Adhikary, B. Mahale, A. Senyshyn, R. Ranjan, Phys. Rev. B 102, 184113 (2020)

    Article  ADS  Google Scholar 

  16. H. Xie, L. Jin, D. Shen, X. Wang, G. Shen, J. Cryst. Growth 311, 3626 (2009)

    Article  ADS  Google Scholar 

  17. G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Y.I. Bokhan, V.M. Laletin, Phys. Rev. B Condens. Matter Mater. 64, 1 (2001)

    Article  Google Scholar 

  18. N.S. Sowmya, A. Srinivas, P. Saravanan, K.V.G. Reddy, M.V. Reddy, D. Das, S.V. Kamat, J. Magn. Magn. Mater. 436, 31 (2017)

    Article  ADS  Google Scholar 

  19. A.H. Pandey, P. Varade, K. Miriyala, N.S. Sowmya, A. Kumar, A. Arockiarajan, A.R. Kulkarni, N. Venkataramani, Mater. Today Commun. 26, 101898 (2021)

    Article  Google Scholar 

  20. Y. Shen, J. Gao, Y. Wang, J. Li, D. Viehland, Appl. Phys. Lett. 100, 173505 (2012)

    Article  ADS  Google Scholar 

  21. D.A. Burdin, D.V. Chashin, N.A. Ekonomov, Y.K. Fetisov, G. Srinivasan, Appl. Phys. Lett. (2012). https://doi.org/10.1063/1.4729124

    Article  Google Scholar 

  22. S. Dinesh Kumar, J. Magesh, V. Subramanian, J. Alloys Compd. 753, 595 (2018)

    Article  Google Scholar 

  23. A. Kumar, A. Arockiarajan, J. Appl. Phys. (2019). https://doi.org/10.1063/1.5108708

    Article  Google Scholar 

  24. A. Kumar, J.A. Chelvane, A. Arockiarajan, Smart Mater. Struct. 29, 035015 (2020)

    Article  ADS  Google Scholar 

  25. J.X. Ye, J.N. Ma, J. Ma, J.M. Hu, Z. Li, M. Feng, Q.M. Zhang, C.W. Nan, J. Appl. Phys. 116, 6 (2014)

    Google Scholar 

  26. D.A. Burdin, N.A. Ekonomov, D.V. Chashin, L.Y. Fetisov, Y.K. Fetisov, M. Shamonin, Materials (Basel). 10, 1 (2017)

    Article  Google Scholar 

  27. A. Lasheras, J.G. Etxebarria, A. Maceiras, M.S. Sebastián, J.M. Barandiarán, J.L. Vilas, L.M. León, D. Shishkin, A. Potapov, IEEE Trans. Magn. 51, 1 (2015)

    Article  Google Scholar 

  28. R. Adnan Islam, S. Priya, Adv. Condens. Matter Phys. 2012, 1–29 (2012)

    Article  ADS  Google Scholar 

  29. F. Fang, Y.T. Xu, W. Yang, J. Appl. Phys. (2012). https://doi.org/10.1063/1.3677945

    Article  Google Scholar 

  30. N.S. Sowmya, P. Varade, N. Venkataramani, A.R. Kulkarni, J. Eur. Ceram. Soc. 40, 5384 (2020)

    Article  Google Scholar 

  31. H. Jaffe, J. Am. Ceram. Soc. 41, 494 (1958)

    Article  Google Scholar 

  32. M. Onoe, H. Jumonji, J. Acoust. Soc. Am. 41, 974 (1967)

    Article  ADS  Google Scholar 

  33. Y. Hiruma, K. Yoshii, H. Nagata, T. Takenaka, J. Appl. Phys. 103, 84121 (2008)

    Article  Google Scholar 

  34. Q. Li, M.H. Zhang, Z.X. Zhu, K. Wang, J.S. Zhou, F.Z. Yao, J.F. Li, J. Mater. Chem. C 5, 549 (2017)

    Article  Google Scholar 

  35. A. Sharma, I. Bhaumik, G. Singh, V. Sagar Tiwari, Phys. Status Solidi 2100155 (2021)

  36. A. Sharma, I. Bhaumik, G. Singh, V.S. Tiwari, A.K. Karnal, J. Mater. Res. 36, 2950 (2021)

    Article  ADS  Google Scholar 

  37. V.K. Vlasko-Vlasov, Y.K. Lin, D.J. Miller, U. Welp, G.W. Crabtree, V.I. Nikitenko, Phys. Rev. Lett. 84, 2239 (2000)

    Article  ADS  Google Scholar 

  38. S. Ito, K. Aso, Y. Makino, S. Uedaira, Appl. Phys. Lett. 37, 665 (1980)

    Article  ADS  Google Scholar 

  39. B. Sarkar, B. Dalal, V. Dev Ashok, K. Chakrabarti, A. Mitra, S.K. De, J. Appl. Phys. (2014). https://doi.org/10.1063/1.4869782

    Article  Google Scholar 

  40. S.M. Subhani, S. Maniprakash, A. Arockiarajan, Mech. Mater. 126, 111 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the IRCC, IIT Bombay, for dielectric, impedance and PE loop measurements. NV & ARK acknowledge the Department of Science and Technology, India (Project Code No. RD/0118-DST000-020) for supporting this work. AA would like to extend his gratitude to the Science and Engineering Research Board of India, DST, India for providing the financial aid under Project No.: EMR/2015/001559. The funding received from the Institute of Eminence Research Initiative Project on Materials and Manufacturing for Futuristic Mobility (Project no. SB20210850MMMHRD008275) is gratefully acknowledged. AP acknowledges the Indian Institute of Bombay, Mumbai for the post-doctoral research fellowship.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to study conception and design. Material preparation, data collection and analysis were performed by AP, AK, PV, and KM. The first draft of the manuscript was written by AP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Adityanarayan Pandey or N. Venkataramani.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Data repository

The data set on which the conclusion of the paper relies is presented in the main manuscript and available on reasonable request.

Data citation

No publicly available data is used for the conclusion of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2610 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Kumar, A., Varade, P. et al. Temperature-dependent magnetoelectric response of lead-free Na0.4K0.1Bi0.5TiO3/NiFe2O4-laminated composites. Appl. Phys. A 129, 843 (2023). https://doi.org/10.1007/s00339-023-07125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07125-8

Keywords

Navigation