Skip to main content
Log in

Investigation on the surface roughness of glass–ceramic by in-situ laser-assisted machining

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Glass–ceramic is a widely used and difficult to machine material with high hardness and brittleness. For this reason, in-situ laser-assisted machining (LAM) of glass–ceramic was carried out with surface roughness as the characteristic value to study the machining quality of glass–ceramic. Orthogonal experiments on in-situ LAM were conducted using the Taguchi method (TM). The range of surface roughness reduction obtained by comparing in-situ LAM with conventional machining is 44.44–61.27%. The optimal combination of machining parameters that can minimize surface roughness obtained through signal-to-noise ratio (S/N) analysis is: spindle speed 450 rpm, feed speed 0.01 mm/rev, cutting depth 14 μm, laser power 70 W. Surface topography analysis confirmed that in-situ LAM can effectively enhance the plastic removal of glass–ceramic. The comparison between pre-heat LAM and in-situ LAM confirms that in-situ LAM machining of glass–ceramic is more reliable. Artificial neural network (ANN) and genetic algorithm (GA) were used to fit and optimize the machining parameters and experimental results in TM orthogonal experiments. The optimal combination of machining parameters obtained after ANN fitting and GA optimization is: spindle speed 400 rpm, feed speed 0.01 mm/rev, cutting depth 16 μm, laser power 75 W. Experiments were conducted using the optimal combination of machining parameters of TM and ANN, the results showed that ANN performs better than TM in predicting minimum surface roughness and optimizing machining parameters. This study provides a reference for in-situ LAM of glass–ceramic and parameter optimization methods for surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data of this study are available from the corresponding author on responsible request.

References

  1. O.N. Almasarawi, E.M.A. Hamzawy, F.H. Margha, Appl. Phys. A 128, 1126 (2022)

    Article  ADS  Google Scholar 

  2. X. Du, Y. Pu, X. Peng, Ceram. Int. 48, 5404 (2022)

    Article  Google Scholar 

  3. M.M. El-Desoky, I. Morad, H.E. Ali, Appl. Phys. A 129, 196 (2023)

    Article  ADS  Google Scholar 

  4. A.M. Al-Syadi, M. Abaker, Appl. Phys. A 129, 425 (2023)

    Article  ADS  Google Scholar 

  5. A.E. Omar, H.S. Zayed, E.M.A. Hamzawy, Appl. Phys. A 128, 1 (2022)

    Article  Google Scholar 

  6. H. Chen, H. Lin, P. Zhang, Ceram. Int. 47, 8468 (2021)

    Article  Google Scholar 

  7. M. Friedrich, M. Kahle, J. Bliedtner, Appl. Phys. A 126, 878 (2020)

    Article  ADS  Google Scholar 

  8. Z. Yang, L. Zhu, G. Zhang, Int. J. Mach. Tool. Manufact. 156, 103594 (2020)

    Article  Google Scholar 

  9. Z. Zhang, Y. Zhang, W. Ming, J. Manuf. Process. 64, 694 (2021)

    Article  Google Scholar 

  10. K. You, G. Yan, X. Luo, J. Manuf. Process. 58, 677 (2020)

    Article  Google Scholar 

  11. T.B. Mac, T.T. Luyen, D.T. Nguyen, Metals. 13, 699 (2023)

    Article  Google Scholar 

  12. A.K. Parida, K. Maity, Measurement 152, 107292 (2020)

    Article  Google Scholar 

  13. N.C. Golota, D. Preiss, Z.P. Fredin, Appl. Phys. A 129, 1 (2023)

    Article  Google Scholar 

  14. Z. Ma, Q. Wang, Y. Liang, Ceram. Int. 49, 16971 (2023)

    Article  Google Scholar 

  15. O. Kalantari, M.M. Fallah, F. Jafarian, Inst. Mech. Eng. Part. C-J Eng. Mech. Eng. Sci. 235, 5009 (2021)

    Article  Google Scholar 

  16. S.R. Banik, N. Kalita, K. Gajrani, Mater. Today: Proc. 5, 18459 (2018)

    Google Scholar 

  17. C. Cao, Y. Zhao, J. Meng, Int. J. Adv. Manuf. Technol. 125, 4467 (2023)

    Article  Google Scholar 

  18. H. Song, P. Pan, K. Xu, SILICON 14, 2975 (2022)

    Article  Google Scholar 

  19. K. You, F. Fang, G. Yan, Int. J. Mach. Tools Manuf 168, 103770 (2021)

    Article  Google Scholar 

  20. D. Dai, Y. Zhao, C. Cao, Surf. Topogr. Metrol. Prop. 10, 035013 (2022)

    Article  ADS  Google Scholar 

  21. C. Zhai, J. Xu, X. Nie, Int. J. Appl. Ceram. Technol. 18, 2273 (2021)

    Article  Google Scholar 

  22. X. Kong, G. Hu, N. Hou, J. Manuf. Process. 96, 68 (2023)

    Article  Google Scholar 

  23. H. Song, J. Dan, J. Du, SILICON 11, 3049 (2019)

    Article  Google Scholar 

  24. K. You, F. Fang, G. Yan, Micromachines. 11, 1104 (2020)

    Article  Google Scholar 

  25. R. Geng, X. Yang, Q. Xie, Infrared Phys. Technol. 118, 103868 (2021)

    Article  Google Scholar 

  26. C. Lin, W. He, X. Chen, J. Mater. Res. Technol-JMRT. 24, 7704 (2023)

    Article  Google Scholar 

  27. K. Huang, Z. Shen, Z. Zheng, J. Manuf. Process. 84, 149 (2022)

    Article  Google Scholar 

  28. M. Fan, X. Zhou, S. Chen, SILICON 14, 12155 (2022)

    Article  Google Scholar 

  29. J. Ke, X. Chen, C. Liu, Int. J. Adv. Manuf. Technol. 118, 3265 (2022)

    Article  Google Scholar 

  30. M. Fan, X. Zhou, J. Song, Opt. Laser Technol. 169, 110109 (2024)

    Article  Google Scholar 

  31. Z. Hajijamali, A. Khayatian, M.A. Kashi, Appl. Phys. A 129, 353 (2023)

    Article  ADS  Google Scholar 

  32. X. Kong, L. Yang, H. Zhang, Int. J. Adv. Manuf. Technol. 89, 529 (2017)

    Article  Google Scholar 

  33. H. Song, J. Dan, J. Li, J. Manuf. Process. 38, 9 (2019)

    Article  Google Scholar 

  34. M. Fan, X. Zhou, S. Chen, Proc. IMechE, Part B: J. Engineering. Manufacture. 09544054231179242 (2023)

  35. P.U. Ashish, S.H. Gupta, Appl. Phys. A 128, 192 (2022)

    Article  ADS  Google Scholar 

  36. J. Bilski, B. Kowalczyk, A. Marchlewska, J. Artif. Intell. Soft Comput. Res. 10, 299 (2020)

    Article  Google Scholar 

  37. H. Song, G. Ren, J. Dan, SILICON 11, 1903 (2019)

    Article  Google Scholar 

  38. S. Chen, Y. Yue, J. Liu, Appl. Phys. A 128, 945 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Mechanical Basic Experiment Center of Jilin University for providing the experimental site.

Funding

The study was funded by National Natural Science Foundation of China-Regional Innovation Joint Fund Project [Grant number U21A20137].

Author information

Authors and Affiliations

Authors

Contributions

MF: writing—original draft preparation. XZ: supervision. JS: conceptualization, methodology. SJ: writing reviewing and editing. SC: software.

Corresponding author

Correspondence to Xiaoqin Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, M., Zhou, X., Song, J. et al. Investigation on the surface roughness of glass–ceramic by in-situ laser-assisted machining. Appl. Phys. A 129, 811 (2023). https://doi.org/10.1007/s00339-023-07091-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07091-1

Keywords

Navigation