Skip to main content
Log in

A switchable polarization-independent broadband GST-based metasurface infrared absorber in modulating applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Phase change materials (PCMs) are temperature-sensitive materials that transit between two different states. These materials have been employed to design switchable sensing and modulating devices. The Ge2Sb2Te5 (GST) material is a PCM which has two different phases as amorphous and crystalline states by temperature change. GST has been recently utilized to design novel tunable optical absorbers. In this research, a switchable wideband infrared absorber consisting of arrays of stacked GST cylindrical placed on top of a dielectric spacer terminated with a conducting layer acting as a back reflector is investigated. Having proper dimensions of the unit cell structure design, we achieved an infrared wideband metasurface absorber having absorption amplitude more than 90% (“ON”-state) in crystalline state while the absorption amplitude is less than 8.4% (“OFF”-state) in the amorphous phase of GST. Therefore, the structure switches in two “ON/OFF-state” through different annealing temperatures. Moreover, the sweep between the amorphous and crystalline phases of GST results in switching capability with the modulation depth greater than 0.9, as well as extinction ratio less than − 7 dB in the infrared frequency range of 17.5–45 THz. Furthermore, it is illustrated that the proposed structure is polarization-insensitive which has the ability to maintain superior absorption performance over a wide range of incident angles. It can be concluded that our proposed infrared switchable absorber is a suitable candidate for a broadband reflection modulating applications as well as thermal emitters and solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. C.R. Simovski, P.A. Belov, A.V. Atrashchenko, Y.S. Kivshar, Wire metamaterials: physics and applications. Adv. Mater. 24, 4229–4248 (2012)

    Google Scholar 

  2. H. Hamzah, J. Lees, A. Porch, Split ring resonator with optimised sensitivity for microfluidic sensing. Sens. Actuators, A 276, 1–10 (2018)

    Google Scholar 

  3. S. Barzegar-Parizi, Z. Vafapour, Dynamically switchable sub-THz absorber using VO2 metamaterial suitable in optoelectronic applications. IEEE Trans. Plasma Sci. 50(12), 5038–5045 (2022)

    ADS  Google Scholar 

  4. L.L. Spada, C. Spooner, S. Haq, Y. Hao, Curvilinear metasurfaces for surface wave manipulation. Sci. Rep. 9, 1–10 (2019)

    ADS  Google Scholar 

  5. P. Alitalo, S. Tretyakov, Electromagnetic cloaking with metamaterials. Mater. Today 12, 22–29 (2009)

    Google Scholar 

  6. X. Zhang, Z. Liu, Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435–441 (2008)

    ADS  Google Scholar 

  7. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    ADS  Google Scholar 

  8. Z. Vafapour, M.R. Forouzeshfard, Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials. Plasmonics 12, 1331–1342 (2017)

    Google Scholar 

  9. S. Barzegar-Parizi, A. Ebrahimi, Terahertz high-Q absorber based on holes array perforated into a metallic slab. Electronics 10, 1860 (2021)

    Google Scholar 

  10. Z. Vafapour, H. Ghahraloud, Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial. J. Opt. Sco. Am. B 35(5), 1192–1199 (2018)

    ADS  Google Scholar 

  11. Y. Qiu, J. Wang, M. Xiao, T. Lang, Broadband terahertz metamaterial absorber: design and fabrication. Appl. Opt. 60(32), 10055–10061 (2021)

    ADS  Google Scholar 

  12. Z. Vafapour, M. Dutta, M.A. Stroscio, “Sensing, switching and modulating applications of a superconducting THz metamaterial. IEEE Sens. J. 21(13), 15187–15195 (2021)

    ADS  Google Scholar 

  13. R. Yahiaoui, J. Mathews, J. A. Burrow, I. Agha, G. Sevison, A. M. Urbas, A. Sarangan, T. A. Searles, Thermally tunable far-infrared metasurfaces enabled by Ge2Sb2Te5 Phase-change material. In: IEEE Research and Applications of Photonics In Defense Conference (RAPID), pp. 1–4 (2018)

  14. S.K. Patel, J. Parmar, V. Sorathiya, T.K. Nguyen, V. Dhasarathan, Tunable infrared metamaterial-based biosensor for detection of hemoglobin and urine using phase change material. Sci. Rep. 11(1), 7101 (2021)

    ADS  Google Scholar 

  15. A. Hamouleh-Alipour, M. Forouzeshfard, R. Baghbani, Z. Vafapour, Blood hemoglobin concentration sensing by optical nano biosensor-based plasmonic metasurface: a feasibility study. IEEE Trans. Nanotechnol. 21, 620–628 (2022)

    ADS  Google Scholar 

  16. K. Guo, X. Li, H. Ai, X. Ding, L. Wang, W. Wang, Z. Guo, Tunable oriented mid-infrared wave based on metasurface with phase change material of GST. Results Phys. 34, 105269 (2022)

    Google Scholar 

  17. M. Wei, Z. Song, Y. Deng, Y. Liu, Q. Chen, Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces. Mater. Lett. 236, 350–353 (2019)

    Google Scholar 

  18. X. Tian, Z.Y. Li, Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photon. Res. 4(4), 146–152 (2016)

    Google Scholar 

  19. L. Zhang, Y. Wang, L. Zhou, F. Chen, Tunable perfect absorber based on gold grating including phase-changing material in visible range. Appl. Phys. A 125, 1–7 (2019)

    Google Scholar 

  20. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, Electrically tunable negative permeability metamaterials based on nematic liquid crystals. Appl. Phys. Lett. 90(1), 011112 (2007)

    ADS  Google Scholar 

  21. O. Buchnev, N. Podoliak, M. Kaczmarek, N.I. Zheludev, V.A. Fedotov, Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch. Adv. Opt. Mater. 3, 674 (2015)

    Google Scholar 

  22. C. Lee, C. Huang, H. Liu, X. Zhang, Z. Liu, Resonance enhancement of terahertz metamaterials by liquid crystals/indium tinoxide interfaces. Opt. Express 21(5), 6519–6525 (2013)

    ADS  Google Scholar 

  23. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, A graphene-based broadband optical modulator. Nature 474, 64 (2011)

    ADS  Google Scholar 

  24. G. Liang, X. Hu, X. Yu, Y. Shen, L.H. Li, A.G. Davies, E.H. Linfield, H.K. Liang, Y. Zhang, S.F. Yu, Q.J. Wang, Integrated terahertz graphene modulator with 100% modulation depth. ACS Photon. 2, 1559 (2015)

    Google Scholar 

  25. C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, S. Xiao, Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance. Opt. Commun. 436, 57 (2019)

    ADS  Google Scholar 

  26. C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, S. Xiao, A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays. Sensors 18, 4489 (2018)

    ADS  Google Scholar 

  27. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F.J. García de Abajo, V. Pruneri, H. Altug, Mid-infrared plasmonic biosensing with graphene. Science 349, 165 (2015)

    ADS  Google Scholar 

  28. S. Barzegar-Parizi, A. Ebrahimi, Ultrathin, polarization-insensitive multi-band absorbers based on Graphene metasurface with THz sensing application. J. Opt. Soc. Am. B 37, 2372–2381 (2020)

    ADS  Google Scholar 

  29. S. Barzegar-Parizi, Graphene-based tunable dual-band absorbers by ribbon/disk array. Opt. Quant. Electron. 51, 167 (2018)

    Google Scholar 

  30. S. Barzegar-Parizi, A. Ebrahimi, K. Ghorbani, High-Q dual-band graphene absorbers by selective excitation of graphene plasmon polaritons: circuit model analysis. Opt. Laser Technol. 132, 106483 (2020)

    Google Scholar 

  31. S. Barzegar-Parizi, A. Ebrahimi, K. Ghorbani, Dual-broadband and single ultrawideband absorbers from the terahertz to infrared regime. J. Opt. Soc. Am. B 38, 2628–2637 (2021)

    ADS  Google Scholar 

  32. B. Wu, M. Wang, X. Wu, Broadband tunable absorption based on phase change materials. Results Phys. 20, 103704 (2021)

    Google Scholar 

  33. G. Linyang, M. Xiaohui, Ch. Zhaoqing, X. Chunlin, L. Jun, Zh. Ran, Tunable a temperature-dependent GST-based metamaterial absorber for switching and sensing applications. J. Market. Res. 14, 772–779 (2021)

    Google Scholar 

  34. K. Shportko, S. Kremers, M. Woda et al., Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008)

    ADS  Google Scholar 

  35. Z. Guo, X. Yang, F., Shen, et al., Active-tuning and polarization-independent absorber and sensor in the infrared region based on the phase change material of Ge2Sb2Te5 (GST). Sci. Rep. 8, 12433 (2018)

    ADS  Google Scholar 

  36. L. Chen, L. Sun, H. Dong, N. Mou, Y. Zhang, Q. Li, X. Jianga, L. Zhang, Near-field imaging of the multi-resonant mode induced broadband tunable metamaterial absorber. RSC Adv. 10, 5146 (2020)

    ADS  Google Scholar 

  37. D. Morden, E.M. Smith, I. Avrutsky, J.R. Hendrickson, I. Agha, Sh. Vangala, Tunable angle-independent mid-infrared optical filters using GST-based micro resonator arrays. Opt. Mater. Express 12, 1043–1054 (2022)

    ADS  Google Scholar 

  38. I. Vassalini, I. Alessandri, D. de Ceglia, Stimuli-responsive phase change materials: optical and optoelectronic applications. Materials (Basel) 14(12), 3396 (2021)

    ADS  Google Scholar 

  39. W. Zhu, Y. Fan, C. Li, R. Yang, Sh. Yan, Q. Fu, F. Zhang, Ch. Gu, J. Li, Realization of a near-infrared active Fano-resonant asymmetric metasurface by precisely controlling the phase transition of Ge2Sb2Te5. Nanoscale 12, 8758 (2020)

    Google Scholar 

  40. M. Nejat, N. Nozhat, Sensing and switching capabilities of a tunable GST-based perfect absorber in near-infrared region. J. Phys. D Appl. Phys. 53, 245105 (2020)

    ADS  Google Scholar 

  41. W. Bai, P. Yang, J. Huang et al., Near-infrared tunable metalens based on phase change material Ge2Sb2Te5. Sci. Rep. 9, 5368 (2019)

    ADS  Google Scholar 

  42. M. Pourmand, P.K. Choudhury, M.A. Mohamed, Tunable absorber embedded with GST mediums and trilayer graphene strip microheaters. Sci. Rep. 11, 3603 (2021)

    ADS  Google Scholar 

  43. M.A. Baqir, L.F. Abdulrazak, M.N. Akhtar, Polarization insensitive, wide angle and wideband anisotropic metamaterial absorber comprising phase change Ge2Sb2Te5 (GST)/SiO2 layered media. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2087010

    Article  Google Scholar 

  44. S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, A. Adibi, Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics 9(5), 1189–1241 (2020)

    Google Scholar 

  45. C. Ruiz de Galarreta, S.G.C. Carrillo, Y.Y. Au, E. Gemo, L. Trimby, J. Shields, E. Humphreys, J. Faneca, L. Cai, A. Baldycheva, J. Bertolotti, C.D. Wright, Tunable optical metasurfaces enabled by chalcogenide phase-change materials: from the visible to the THz. J. Opt. 22, 114001 (2020)

    ADS  Google Scholar 

  46. Y.G. Chen, T.S. Kao, B. Ng, X. Li, X.G. Luo, B. Luk’yanchuk, S.A. Maier, M.H. Hong, Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt. Express 21, 13691–13698 (2013)

    ADS  Google Scholar 

  47. J. He, M. Zhang, Sh. Shu, Y. Yan, M. Wang, VO2 based dynamic tunable absorber and its application in switchable control and real-time color display in the visible region. Opt. Express 28, 37590–37599 (2020)

    ADS  Google Scholar 

  48. T. Wang, Y. Zhang, H. Zhang, M. Cao, Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial. Opt. Mater. Express 10, 369–386 (2020)

    ADS  Google Scholar 

  49. M. Zou, L. Yi, W. Zhao, X. Zhang, Y. Wu, Ch. Peng, L. Fan, J. Li, J. Yan, J. Zhuang, J. Mei, X. Wang, Dynamically tunable perfect absorber based on VO2–Au hybrid nanodisc array. Opt. Eng. 60(8), 087103 (2021)

    Google Scholar 

  50. Y. Zhao, Q. Huang, H. Cai, X. Lin, Y. Lu, A broadband and switchable VO2 -based perfect absorber at the THz frequency. Opt. Commun. 426, 443–449 (2018)

    ADS  Google Scholar 

  51. P. Guo, A.M. Sarangan, I. Agha, A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators. Appl. Sci. 9, 530 (2019)

    Google Scholar 

  52. N. Mou, S. Sun, H. Dong, S. Dong, Q. He, L. Zhou, L. Zhang, Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. Opt. Express 26(9), 11728–11736 (2018)

    ADS  Google Scholar 

  53. H.J. Kim, J. Sohn, N. Hong, C. Williams, W. Humphreys, PCM-net: a refractive index database of chalcogenide phase change materials for tunable nanophotonic device modelling. J. Phys. Photonics 3, 024008 (2021)

    ADS  Google Scholar 

  54. Z. Vafapour, E.S. Lari, M.R. Forouzeshfard, Breast cancer detection capability of a tunable perfect semiconductor absorber: Analytical and numerical evaluation. Opt. Eng. 60(10), 107101–107101 (2021)

    ADS  Google Scholar 

  55. Z. Vafapour, Cost-effective bull’s eye aperture-style multi-band metamaterial absorber at sub-THz band: design, numerical analysis, and physical interpretation. Sensors 22(8), 2892 (2022)

    ADS  Google Scholar 

  56. S. García-Cuevas Carrillo, G.R. Nash, H. Hayat, M.J. Cryan, M. Klemm, H. Bhaskaran, C.D. Wright, Design of practicable phase-change metadevices for near-infrared absorber and modulator applications. Opt. Express 24(12), 13563–13573 (2016)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeedeh Barzegar-Parizi.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzegar-Parizi, S., Vafapour, Z. A switchable polarization-independent broadband GST-based metasurface infrared absorber in modulating applications. Appl. Phys. A 129, 790 (2023). https://doi.org/10.1007/s00339-023-07078-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07078-y

Keywords

Navigation