Skip to main content
Log in

Ultra-broadband polarization-independent perfect absorber based on phase change material (\({\hbox {Ge}_{2}\hbox {Sb}_{2}\hbox {Te}_5}\) or GST) for the visible and infrared regions

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Broadband optical absorbers are increasingly in demand in various applications, including solar cells and radiative cooling systems. Among various types of structures, absorbers based on metamaterial structures have attracted much attention. However, they generally suffer from the issues of narrow bandwidth, high-cost fabrication, and high sensitivity to polarization changes. This paper presents a broadband, polarization-independent metamaterial absorber working in both infrared and visible frequency regimes. This structure is composed of a continuous phase-change material film (\({\hbox {Ge}_{2}\hbox {Sb}_{2}\hbox {Te}_5}\)) separated between two thin spacer layers of \({\hbox {SiO}_{2}}\), and an array of amorphous Silicon particles located on the top of the structure. The proposed device was shown to exhibit remarkable absorptivity (more than 90 percent) within a broad range of frequencies starting from 250 to 1050 THz. In addition, thanks to the structural symmetry, the strong absorbance shows a considerable overlap between transverse magnetic (TM) and transverse electric (TE) modes over an extensive range of incident angles. The designing procedure for this absorber can be used as a guideline for designing similar metamaterial absorbers in any desirable frequency band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Ameli, S., Anubi, O.M.: Robust control for a class of nonlinearly coupled hierarchical systems with actuator faults. IFAC-PapersOnLine 54(20), 540–546 (2021)

    Google Scholar 

  • Arik, K., Abdollahramezani, S., Farajollahi, S., Khavasi, A., Rejaei, B.: Design of mid-infrared ultra-wideband metallic absorber based on circuit theory. Opt. Commun. 381, 309–313 (2016)

    ADS  Google Scholar 

  • Arik, K., AbdollahRamezani, S., Khavasi, A.: Polarization insensitive and broadband terahertz absorber using graphene disks. Plasmonics 12(2), 393–398 (2017)

    Google Scholar 

  • Bae, S.-I., Kim, K., Jang, K.-W., Kim, H.-K., Jeong, K.-H.: High contrast ultrathin light-field camera using inverted microlens arrays with metal-insulator-metal optical absorber. Adv. Opt. Mater. 9(6), 2001657 (2021)

    Google Scholar 

  • Bisht, P., Pandey, K.K., Barshilia, H.C.: Photostable transparent wood composite functionalized with an uv-absorber. Polym. Degrad. Stab. 189, 109600 (2021)

    Google Scholar 

  • Cao, T., Zhang, L., Simpson, R.E., Cryan, M.J.: Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial. JOSA B 30(6), 1580–1585 (2013)

    ADS  Google Scholar 

  • Chen, Y., Li, X., Luo, X., Maier, S.A., Hong, M.: Tunable near-infrared plasmonic perfect absorber based on phase-change materials. Photon. Res. 3(3), 54–57 (2015)

    Google Scholar 

  • Fang, Z., Thongrattanasiri, S., Schlather, A., Liu, Z., Ma, L., Wang, Y., Ajayan, P.M., Nordlander, P., Halas, N.J., de García Abajo, F.J.: Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS nano 7(3), 2388–2395 (2013)

    Google Scholar 

  • Feng, H., Li, X., Wang, M., Xia, F., Zhang, K., Kong, W., Dong, L., Yun, M.: Ultrabroadband metamaterial absorbers from ultraviolet to near-infrared based on multiple resonances for harvesting solar energy. Opt. Express 29(4), 6000–6010 (2021)

    ADS  Google Scholar 

  • Ferry, V.E., Munday, J.N., Atwater, H.A.: Design considerations for plasmonic photovoltaics. Adv. Mater. 22(43), 4794–4808 (2010)

    Google Scholar 

  • Grant, J., Ma, Y., Saha, S., Khalid, A., Cumming, D.R.: Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett. 36(17), 3476–3478 (2011)

    ADS  Google Scholar 

  • Guo, J., Zou, Y., Leong, H.S., Zhang, B.: Multiplexed nanostructure metamaterial for wide spectral band perfect light absorption. In: Photonic Metamaterials and Plasmonics, p. 4. Optical Society of America (2010)

  • Guo, Z., Yang, X., Shen, F., Zhou, Q., Gao, J., Guo, K.: Active-tuning and polarization-independent absorber and sensor in the infrared region based on the phase change material of Ge2Sb2Te5 (GST). Sci. Rep. 8(1), 1–8 (2018)

    Google Scholar 

  • Ha, S.D., Zhou, Y., Fisher, C.J., Ramanathan, S., Treadway, J.P.: Electrical switching dynamics and broadband microwave characteristics of vo2 radio frequency devices. J. Appl. Phys. 113(18), 184501 (2013)

    ADS  Google Scholar 

  • Hao, J., Wang, J., Liu, X., Padilla, W.J., Zhou, L., Qiu, M.: High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96(25), 251104 (2010)

    ADS  Google Scholar 

  • Hedayati, M.K., Javaherirahim, M., Mozooni, B., Abdelaziz, R., Tavassolizadeh, A., Chakravadhanula, V.S.K., Zaporojtchenko, V., Strunkus, T., Faupel, F., Elbahri, M.: Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv. Mater. 23(45), 5410–5414 (2011)

    Google Scholar 

  • Hossain, I., Samsuzzaman, M., Moniruzzaman, M., Bais, B.B., Singh, M.S.J., Islam, M.T.: Polarization-independent broadband optical regime metamaterial absorber for solar harvesting: a numerical approach. Chin. J. Phys. 71, 699–715 (2021)

    MathSciNet  Google Scholar 

  • Hosseini, P., Wright, C.D., Bhaskaran, H.: An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511(7508), 206–211 (2014)

    ADS  Google Scholar 

  • Hu, C., Liu, L., Zhao, Z., Chen, X., Luo, X.: Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies. Opt. Express 17(19), 16745–16749 (2009)

    ADS  Google Scholar 

  • Ji, S., Jiang, C., Zhao, J., Zhang, X., He, Q.: Design of a polarization-insensitive triple-band metamaterial absorber. Opt. Commun. 432, 65–70 (2019)

    ADS  Google Scholar 

  • Koppens, F..H., Chang, D..E., García de Abajo, F..J.: Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11(8), 3370–3377 (2011)

    ADS  Google Scholar 

  • Lee, B.-S., Abelson, J.R., Bishop, S.G., Kang, D.-H., Cheong, B.-K., Kim, K.-B.: Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases. J. Appl. Phys. 97(9), 093509 (2005)

    ADS  Google Scholar 

  • Li, X., Yang, L., Hu, C., Luo, X., Hong, M.: Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency. Opt. Express 19(6), 5283–5289 (2011)

    ADS  Google Scholar 

  • Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342–2348 (2010)

    ADS  Google Scholar 

  • Liu, X., Tyler, T., Starr, T., Starr, A.F., Jokerst, N.M., Padilla, W.J.: Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107(4), 045901 (2011)

    ADS  Google Scholar 

  • Liu, Y., Gu, S., Luo, C., Zhao, X.: Ultra-thin broadband metamaterial absorber. Appl. Phys. A 108(1), 19–24 (2012)

    ADS  Google Scholar 

  • Liu, Z., Gao, E., Zhang, Z., Li, H., Xu, H., Zhang, X., Luo, X., Zhou, F.: Dual-mode on-to-off modulation of plasmon-induced transparency and coupling effect in patterned graphene-based terahertz metasurface. Nanoscale Res. Lett. 15(1), 1–9 (2020)

    ADS  Google Scholar 

  • Lou, P., He, Y., Zhu, H., Zhang, X., Hu, L., Wang, B.-X.: Multiple-band terahertz perfect light absorbers enabled by using multiple metallic bars. Phys. Scr. 96(5), 055502 (2021)

    ADS  Google Scholar 

  • Ma, W., Wen, Y., Yu, X.: Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators. Opt. Express 21(25), 30724–30730 (2013)

    ADS  Google Scholar 

  • Marzban, M.R., Alighanbari, A.: Wideband and multi-band frequency selective surfaces for microwave shielding. In: 2021 29th Iranian Conference on Electrical Engineering (ICEE), pp. 836–842. IEEE (2021)

  • Mazurenko, D.A., Kerst, R., Dijkhuis, J.I., Akimov, A.V., Golubev, V.G., Kaplyanskii, A.A., Kurdyukov, D.A., Pevtsov, A.B.: Subpicosecond shifting of the photonic band gap in a three-dimensional photonic crystal. Appl. Phys. Lett. 86(4), 041114 (2005)

    ADS  Google Scholar 

  • Meng, Y., Behera, J.K., Ke, Y., Chew, L., Wang, Y., Long, Y., Simpson, R.E.: Design of a 4-level active photonics phase change switch using vo2 and Ge2Sb2Te5. Appl. Phys. Lett. 113(7), 071901 (2018)

    ADS  Google Scholar 

  • Mkhitaryan, V.K., Ghosh, D.S., Rudé, M., Canet-Ferrer, J., Maniyara, R.A., Gopalan, K.K., Pruneri, V.: Tunable complete optical absorption in multilayer structures including ge\(^2\)sb\(^2\)te\(^5\) without lithographic patterns. Adv. Opt. Mater. 5(1), 1600452 (2017)

    Google Scholar 

  • Mou, N., Liu, X., Wei, T., Dong, H., He, Q., Zhou, L., Zhang, Y., Zhang, L., Sun, S.: Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material. Nanoscale 12(9), 5374–5379 (2020)

    Google Scholar 

  • Mulla, B., Sabah, C.: Multi-band metamaterial absorber topology for infrared frequency regime. Phys. E 86, 44–51 (2017)

    Google Scholar 

  • Patel, S.K., Parmar, J., Sorathiya, V., Nguyen, T.K., Dhasarathan, V.: Tunable infrared metamaterial-based biosensor for detection of hemoglobin and urine using phase change material. Sci. Rep. 11(1), 1–11 (2021)

    Google Scholar 

  • Patel, S.K., Charola, S., Kumar, R.S., Parmar, J.: Broadband polarization-insensitive Jerusalem-shaped metasurface absorber based on phase-change material for the visible region. Phys. B 624, 413440 (2022)

    Google Scholar 

  • Poorgholam-Khanjari, S., Razavi, Z., Zarrabi, F.B.: Reconfigurable optical rectangular particle array absorber based on metal-DNA-metal structure as a refractive index sensor and optical switch. Opt. Commun. 489, 126866 (2021)

    Google Scholar 

  • Qi, Y.-P., Wang, L.-Y., Zhang, Y., Zhang, T., Zhang, B.-H., Deng, X.-Y., Wang, X.-X.: Multiple fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing. Chin. Phys. B 29(6), 067303 (2020)

    ADS  Google Scholar 

  • Qin, F., Chen, X., Yi, Z., Yao, W., Yang, H., Tang, Y., Yi, Y., Li, H., Yi, Y.: Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Sol. Energy Mater. Sol. Cells 211, 110535 (2020)

    Google Scholar 

  • Ramya, S., Rao, I.S.: Design of new metamaterial absorber with triple band for radar cross section reduction. In: 2015 Fifth International Conference on Advances in Computing and Communications (ICACC), pp. 303–306. IEEE (2015)

  • Sedaghat, M., Nayyeri, V., Soleimani, M., Ramahi, O.M.: Practical approaches to designing and fabricating flat lenses. J. Appl. Phys. 126(1), 014901 (2019)

    ADS  Google Scholar 

  • Shabanpour, J., Sedaghat, M., Nayyeri, V., Oraizi, H., Ramahi, O.M.: Real-time multi-functional near-infrared wave manipulation with a 3-bit liquid crystal based coding metasurface. Opt. Express 29(10), 14525–14535 (2021)

    ADS  Google Scholar 

  • Song, Z., Jiang, M., Deng, Y., Chen, A.: Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material. Opt. Commun. 464, 125494 (2020)

    Google Scholar 

  • Sreekanth, K.V., Han, S., Singh, R.: Ge2sb2te5-based tunable perfect absorber cavity with phase singularity at visible frequencies. Adv. Mater. 30(21), 1706696 (2018)

    Google Scholar 

  • Tong, J.K., Hsu, W.-C., Huang, Y., Boriskina, S.V., Chen, G.: Thin-film ‘thermal well’emitters and absorbers for high-efficiency thermophotovoltaics. Sci. Rep. 5(1), 1–12 (2015)

    Google Scholar 

  • Viet, D., Hien, N., Tuong, P., Minh, N., Trang, P., Le, L., Lee, Y., Lam, V.: Perfect absorber metamaterials: peak, multi-peak and broadband absorption. Opt. Commun. 322, 209–213 (2014)

    ADS  Google Scholar 

  • Wang, G.-Z., Wang, B.-X.: Five-band terahertz metamaterial absorber based on a four-gap comb resonator. J. Lightwave Technol. 33(24), 5151–5156 (2015)

    ADS  Google Scholar 

  • Wang, B.-X., Zhu, H.-X., Huang, W.-Q.: Multiple-band ultra-thin perfect metamaterial absorber using analogy split-ring resonators. Plasmonics 14(6), 1789–1800 (2019)

    Google Scholar 

  • Watts, C.M., Shrekenhamer, D., Montoya, J., Lipworth, G., Hunt, J., Sleasman, T., Krishna, S., Smith, D.R., Padilla, W.J.: Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photon. 8(8), 605–609 (2014)

    ADS  Google Scholar 

  • Wu, C., Shvets, G.: Design of metamaterial surfaces with broadband absorbance. Opt. Lett. 37(3), 308–310 (2012)

    ADS  Google Scholar 

  • Xia, S.-X., Zhai, X., Huang, Y., Liu, J.-Q., Wang, L.-L., Wen, S.-C.: Multi-band perfect plasmonic absorptions using rectangular graphene gratings. Opt. Lett. 42(15), 3052–3055 (2017)

    ADS  Google Scholar 

  • Xia, S.-X., Zhai, X., Wang, L.-L., Wen, S.-C.: Polarization-independent plasmonic absorption in stacked anisotropic 2D material nanostructures. Opt. Lett. 45(1), 93–96 (2020)

    ADS  Google Scholar 

  • Yan, M.: Metal-insulator-metal light absorber: a continuous structure. J. Opt. 15(2), 025006 (2013)

    ADS  Google Scholar 

  • Zarei, S., Marzban, M.-R., Khavasi, A.: Integrated photonic neural network based on silicon metalines. Opt. Express 28(24), 36668–36684 (2020)

    ADS  Google Scholar 

  • Zhang, S., Yin, L., Fang, N.: Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102(19), 194301 (2009)

    ADS  Google Scholar 

  • Zhang, Y., Ríos, C., Shalaginov, M.Y., Li, M., Majumdar, A., Gu, T., Hu, J.: Myths and truths about optical phase change materials: a perspective. Appl. Phys. Lett. 118(21), 210501 (2021)

    ADS  Google Scholar 

  • Zhou, Y., Chen, X., Ko, C., Yang, Z., Mouli, C., Ramanathan, S.: Voltage-triggered ultrafast phase transition in vanadium dioxide switches. IEEE Electron Device Lett. 34(2), 220–222 (2013)

    ADS  Google Scholar 

  • Zhu, W., Zhao, X., Gong, B., Liu, L., Su, B.: Optical metamaterial absorber based on leaf-shaped cells. Appl. Phys. A 102(1), 147–151 (2011)

    ADS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work and contributed to the study conception, design and validation. The first draft of the manuscript was written by Saeed Zolfaghary pour and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saeed Zolfaghary pour.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolfaghary pour, S., Arik, K. Ultra-broadband polarization-independent perfect absorber based on phase change material (\({\hbox {Ge}_{2}\hbox {Sb}_{2}\hbox {Te}_5}\) or GST) for the visible and infrared regions. Opt Quant Electron 55, 141 (2023). https://doi.org/10.1007/s11082-022-04395-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04395-z

Keywords

Navigation