Skip to main content
Log in

Structural and electrical properties of Ba3NbMoO8.5 (BNM) hexagonal perovskite for solid electrolyte application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Oxide ion-conducting materials have captured much research interest due to their use in various electrochemical devices such as SOFCs, oxygen sensors, separation membranes and oxygen pumps. Recently, a few hexagonal perovskite materials’ systems show good oxide ion conductivity in wide range of oxygen partial pressure. Here, we have synthesized the a recently explored oxide ion-conducting hexagonal perovskite-based system Ba3MoNbO8.5 via solid-state reaction route and investigated its structural, microstructural and most importantly electrical properties for its suitability as solid electrolyte in electrochemical applications. Rietveld refinement of X-ray diffraction pattern of calcined powder of Ba3MoNbO8.5 was carried out to check the required phase formation. Refinement of XRD data reveals the hexagonal symmetry phase having R\(\overline{3}\)mH space group. FT-IR, Raman and UV spectroscopy measurement were performed to find the crystallographic orientation, vibrational/rotational modes and band gap of the materials. SEM–EDX study was performed to perceive the morphological behavior, densification and chemical composition of constituents. The electrical conductivity of the system was measured using impedance spectroscopy technique and found to be ~ 0.16 × 10–2 Scm−1 at 650 °C. A predominant two-dimensional oxide ion migration was found via the BVE analysis of crystallographic data of the investigated system suggests oxide ion conductivity in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be available on request.

References

  1. S. C. Singhal and K. Kendall, Design and Applications 197 (2003)

  2. E.D. Wachsman, C.A. Marlowe, K.T. Lee, Energy Environ. Sci. 5, 5498 (2012)

    Article  Google Scholar 

  3. S. Cordiner, M. Feola, V. Mulone, F. Romanelli, Appl. Therm. Eng. 27, 738 (2007)

    Article  Google Scholar 

  4. T. Kivisaari, P. Björnbom, C. Sylwan, B. Jacquinot, D. Jansen, A. de Groot, Chem. Eng. J. 100, 167 (2004)

    Article  Google Scholar 

  5. K.D. Panopoulos, L.E. Fryda, J. Karl, S. Poulou, E. Kakaras, J. Power. Sources 159, 570 (2006)

    Article  ADS  Google Scholar 

  6. D. Singh, E. Hernández-Pacheco, P.N. Hutton, N. Patel, M.D. Mann, J. Power. Sources 142, 194 (2005)

    Article  ADS  Google Scholar 

  7. D.M. Bierschenk, J.R. Wilson, S.A. Barnett, Energy Environ. Sci. 4, 944 (2011)

    Article  Google Scholar 

  8. C. Graves, S.D. Ebbesen, S.H. Jensen, S.B. Simonsen, M.B. Mogensen, Nat. Mater. 14, 239 (2015)

    Article  ADS  Google Scholar 

  9. S.P. Jiang, Y. Zhen, Solid State Ionics 179, 1459 (2008)

    Article  Google Scholar 

  10. N. Shaigan, W. Qu, D.G. Ivey, W. Chen, J. Power. Sources 195, 1529 (2010)

    Article  ADS  Google Scholar 

  11. C. Sun, R. Hui, J. Roller, J. Solid State Electrochem. 14, 1125 (2010)

    Article  Google Scholar 

  12. O. Yamamoto, Y. Arachi, H. Sakai, Y. Takeda, N. Imanishi, Y. Mizutani, M. Kawai, Y. Nakamura, Ionics (Kiel). 4, 403 (1998)

    Article  Google Scholar 

  13. M. Choi, S. Hwang, S.J. Kim, J. Lee, D. Byun, W. Lee, A.C.S. Appl, Energy Mater. 2, 4059 (2019)

    Google Scholar 

  14. Z. Duan, M. Yang, A. Yan, Z. Hou, Y. Dong, Y. Chong, M. Cheng, W. Yang, J. Power. Sources 160, 57 (2006)

    Article  ADS  Google Scholar 

  15. K. Amarsingh Bhabu, J. Theerthagiri, J. Madhavan, T. Balu, T.R. Rajasekaran, J. Phys. Chem. C 120, 18452 (2016)

    Article  Google Scholar 

  16. Z. Shao, M.O. Tadé, Intermediate-Temperature Solid Oxide Fuel Cells: Materials and Applications (Springer Berlin Heidelberg, 2016)

    Book  Google Scholar 

  17. M.B. Hanif, S. Rauf, M. Motola, Z.U.D. Babar, C.J. Li, C.X. Li, Mater. Res. Bull. 146, 111612 (2022)

    Article  Google Scholar 

  18. E.D. Wachsman, Solid State Ionics 152–153, 657 (2002)

    Article  Google Scholar 

  19. P. Singh, P.K. Jha, P.A. Jha, P. Singh, Int. J. Hydrogen Energy 45, 17006 (2020)

    Article  Google Scholar 

  20. M.S. Chambers, K.S. Mccombie, J.E. Auckett, A.C. Mclaughlin, J.T.S. Irvine, P.A. Chater, J.S.O. Evans, I.R. Evans, J. Mater. Chem. A 7, 25503 (2019)

    Article  Google Scholar 

  21. M. Yashima, T. Tsujiguchi, K. Fujii, E. Niwa, S. Nishioka, J.R. Hester, K. Maeda, J. Mater. Chem. A 7, 13910 (2019)

    Article  Google Scholar 

  22. K.S. McCombie, E.J. Wildman, S. Fop, R.I. Smith, J.M.S. Skakle, A.C. McLaughlin, J. Mater. Chem. A 6, 5290 (2018)

    Article  Google Scholar 

  23. S. Fop, E.J. Wildman, J.T.S. Irvine, P.A. Connor, J.M.S. Skakle, C. Ritter, A.C. McLaughlin, Chem. Mater. 29, 4146 (2017)

    Article  Google Scholar 

  24. J.E. Auckett, K.L. Milton, I.R. Evans, Chem. Mater. 31, 1715 (2019)

    Article  Google Scholar 

  25. R.S. Tobias, J. Chem. Educ. 56, A209 (1979)

    Article  Google Scholar 

  26. A.P. De Azevedo Marques, D.M.A. De Melo, C.A. Paskocimas, P.S. Pizani, M.R. Joya, E.R. Leite, E. Longo, J. Solid State Chem. 179, 671 (2006)

    Article  ADS  Google Scholar 

  27. S.J. Kashyap, R. Sankannavar, G. M. Madhu, Journal of Superconductivity and Novel Magnetism 35, 2107 (2022)

    Google Scholar 

  28. D. Liao, G. Lin, F. Chen, X. Pan, K. Peng, Ceram. Int. 48, 4545 (2022)

    Article  Google Scholar 

  29. J. Tauc, A. Redinger, S. Siebentritt, Copp. Zinc Tin Sulfide-Based Thin-Film Sol. Cells 627, 363 (2015)

    Google Scholar 

  30. N.F. Mott, E.A. Davis, Philos. Mag. 22, 903 (1970)

    Article  ADS  Google Scholar 

  31. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)

    Article  Google Scholar 

  32. Y. Yasui, T. Tsujiguchi, Y. Sakuda, J. R. Hester, M. Yashima, Phys. Chem. C 5, 2383 (2022)

  33. S. Fop, J.M.S. Skakle, A.C. McLaughlin, P.A. Connor, J.T.S. Irvine, R.I. Smith, E.J. Wildman, J. Am. Chem. Soc. 138, 16764 (2016)

    Article  Google Scholar 

  34. L.L. Wong, K.C. Phuah, R. Dai, H. Chen, W.S. Chew, S. Adams, Chem. Mater. 33, 625 (2021)

    Article  Google Scholar 

  35. H. Chen, S. Adams, IUCrJ 4, 614 (2017)

    Article  Google Scholar 

  36. H. Chen, L.L. Wong, S. Adams, Acta Crystallogr Sect. B Struct. Sci. Cryst. Eng. Mater. 75, 18 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by SERB-ECRA project. One of the authors, R. Pandey, gratefully acknowledges the financial support from Science and Engineering Research Board (Grant No.: ECR/2016/001152), Department of Science and Technology, Government of India. Authors acknowledge the Prof. P. Singh for providing electrical measurement facility.

Author information

Authors and Affiliations

Authors

Contributions

HT: writing—original draft, methodology, investigation, data curation, and formal analysis. RS: supervision, and writing—review & editing. AKS: writing—review & editing, RN: writing—review & editing, VD: writing—review & editing, RP: conceptualization, resource, supervision, funding acquisition, and writing—review and editing.

Corresponding author

Correspondence to Raghvendra Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript. All authors have read and agreed to submit this version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarique, H., Shahid, R., Singh, A.K. et al. Structural and electrical properties of Ba3NbMoO8.5 (BNM) hexagonal perovskite for solid electrolyte application. Appl. Phys. A 129, 791 (2023). https://doi.org/10.1007/s00339-023-07076-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07076-0

Keywords

Navigation