Skip to main content

Synthesis and Characterizations of Hexagonal Perovskite-Related Oxide for Solid Electrolyte Application

  • Conference paper
  • First Online:
Recent Advances in Functional Materials and Devices (AFMD 2023)

Part of the book series: Springer Proceedings in Materials ((SPM,volume 37))

Included in the following conference series:

  • 107 Accesses

Abstract

Perovskite materials show immense potential as an electrolyte in intermediate temperature SOFCs. Recently, a few hexagonal perovskite-based materials demonstrate high oxide ion conductivity at intermediate temperatures in wide range of oxygen partial pressure. In the present work, a prominent hexagonal perovskite-related oxide material, Ba7Nb4MoO20 (BNMO), was synthesized via solid-state reaction method and characterized by X-ray Diffraction, Raman spectroscopy and Fourier-Transform Infrared (FTIR) spectroscopy for phase formation, structural and spectroscopic analysis. The surface morphology and elemental concentration of the synthesized samples was examined using SEM and EDAX spectroscopy. Impedance spectroscopy (EIS) measurement was performed to study the electrical behavior of the sample. At ~650 °C, the electrical conductivity of the composition in the air has been found to be ~1.54 × 10–2 S-cm−1. This demonstrates its possible application as a solid electrolyte for electrochemical devices such as solid oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Hayre R, Cha SW, Colella W, Prinz FB (2016) Fuel cell fundamentals. Wiley. https://doi.org/10.1002/9781119191766

  2. Dicks AL, Rand DAJ (2018) Fuel cell systems explained. Wiley. https://doi.org/10.1002/9781118706992

    Article  Google Scholar 

  3. Barbir F (2013) PEM fuel cells. Theory and practice. Academic Press

    Google Scholar 

  4. Grove WRXXIV (1839) On voltaic series and the combination of gases by platinum. London Edinburgh Dublin Philos Mag J Sci 14(86–87):127–130. https://doi.org/10.1080/14786443908649684

    Article  Google Scholar 

  5. Tarique H, Shahid R, Singh P et al (2022) Effect of potassium substitution at Sr-site on the structural, morphological and electrical properties in Sr3 − 3x K3x Si3O9 (0.0 ≤ x ≤ 0.2) trimer strontium meta-silicate. J Mater Sci: Mater Electron 33:14961–14971. https://doi.org/10.1007/s10854-022-08413-47

  6. Saravanan R (2018) Solid oxide fuel cell (SOFC) materials. Mater Res Found 23:182. https://doi.org/10.21741/9781945291517

    Article  Google Scholar 

  7. Ormerod RM (2003) Solid oxide fuel cells. Chem Soc Rev 32(1):17–28. https://doi.org/10.1039/b105764m

    Article  CAS  Google Scholar 

  8. Singhal S (2000) Advances in solid oxide fuel cell technology. Solid State Ionics 135(1–4):305–313. https://doi.org/10.1016/S0167-2738(00)00452-5

    Article  CAS  Google Scholar 

  9. Kilner JA, Burriel M (2014) Materials for intermediate-temperature solid-oxide fuel cells. Annu Rev Mater Res 44(1):365–393. https://doi.org/10.1146/annurev-matsci-070813-113426

    Article  CAS  Google Scholar 

  10. Hussain S, Yangping L (2020) Review of solid oxide fuel cell materials: cathode, anode, and electrolyte. Energy Transitions 4(2):113–126. https://doi.org/10.1007/s41825-020-00029-8

    Article  Google Scholar 

  11. Minh NQ (1993) Ceramic fuel-cells. J Am Ceram Soc 76(3):563–588. https://doi.org/10.1111/j.1151-2916.1993.tb03645.x

    Article  CAS  Google Scholar 

  12. Skinner SJ (2001) Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes. Int J Inorg Mater 3(2):113–121. https://doi.org/10.1016/S1466-6049(01)00004-6

    Article  CAS  Google Scholar 

  13. Fop S, McCombie KS, Wildman EJ et al (2020) High oxide ion and proton conductivity in a disordered hexagonal perovskite. Nat Mater 19(7):752–757. https://doi.org/10.1038/s41563-020-0629-4

    Article  CAS  Google Scholar 

  14. Fop S, McCombie KS, Wildman EJ, Skakle JMS, Mclaughlin AC (2019) Hexagonal perovskite derivatives: a new direction in the design of oxide ion conducting materials. Chem Commun 55(15):2127–2137. https://doi.org/10.1039/C8CC09534E

    Article  CAS  Google Scholar 

  15. Yashima M, Tsujiguchi T, Sakuda Y, et al (2021) High oxide-ion conductivity through the interstitial oxygen site in Ba7Nb4MoO20-based hexagonal perovskite related oxides. Nat Commun 12(1). https://doi.org/10.1038/s41467-020-20859-w

  16. Coduri M, Karlsson M, Malavasi L (2022) Structure-property correlation in oxide-ion and proton conductors for clean energy applications: recent experimental and computational advancements. J Mater Chem A Mater 10(10):5052–5110. https://doi.org/10.1039/d1ta10326a

    Article  CAS  Google Scholar 

  17. Bezdorozhev O, Solodkyi I, Ostroverkh A, Morozov I, Ostroverkh Y, Solonin Y (2022) Synthesis and characterization of (Ba1-xSrx)7Nb4MoO20 powders for proton-conducting solid oxide fuel cells. Ukr Chem J 88(4):63–78. https://doi.org/10.33609/2708-129x.88.04.2022.63-78

    Article  CAS  Google Scholar 

  18. Sakuda Y, Hester JR, Yashima M Improved oxide-ion and lower proton conduction of hexagonal perovskite-related oxides based on Ba 7 Nb 4 MoO 20 by Cr 6+ doping. https://doi.org/10.2109/jcersj2

  19. Nakayama S (2022) Characteristics of electrolyte-supported SOFC single cells using hexagonal perovskite Ba3MoNbO8.5 and Ba7Nb4MoO20 ceramics. Results in Mater 16. https://doi.org/10.1016/j.rinma.2022.100318

  20. Yasui Y, Tansho M, Fujii K et al (2023) Hidden chemical order in disordered Ba7Nb4MoO20 revealed by resonant X-ray diffraction and solid-state NMR. Nat Commun 14(1):2337. https://doi.org/10.1038/s41467-023-37802-4

    Article  CAS  Google Scholar 

  21. Chauhan A (2014) Powder XRD technique and its applications in science and technology. J Anal Bioanal Tech 5(6). https://doi.org/10.4172/2155-9872.1000212

  22. Kumar A, Sharma SK, Grover V, Singh Y, Kumar V, Shukla VK, Kulriya PK (2022) Probing the short-range ordering of ion irradiated Gd2Ti2-yZryO7 (0.0 ≤ y ≤ 2.0) pyrochlore under electronic stopping regime. J Nucl Mater 564:153682. https://doi.org/10.1016/j.jnucmat.2022.153682

  23. Brown Holden AA, Reedyk M, García-González E, Parras M, González-Calbet JM (2000) Raman scattering study of cation-deficient Ba(n)(MoNb)(n-δ)O(3n–x) and related perovskite-like oxides. Chem Mater 12(8):2287–2291. https://doi.org/10.1021/cm000037i

    Article  CAS  Google Scholar 

  24. Jena P, Nallamuthu N, Hari Prasad K, Venkateswarlu M, Satyanarayana N (2014) Structural characterization and electrical conductivity studies of BaMoO4 nanofibers prepared by sol–gel and electrospinning techniques. J Sol-Gel Sci Technol 72(3):480–489. https://doi.org/10.1007/s10971-014-3460-z

    Article  CAS  Google Scholar 

  25. García-González E, Parras M, González-Calbet JM (1999) Crystal structure of an unusual polytype: 7H-Ba7Nb4MoO20. Chem Mater 11(2):433–437. https://doi.org/10.1021/cm981011i

    Article  Google Scholar 

  26. Redinger A, Siebentritt S (2015) Loss mechanisms in Kesterite solar cells. In Copper zinc tin sulfide-based thin-film solar cells. Wiley :363–386. https://doi.org/10.1002/9781118437865.ch16

  27. Lvovich VF (2012) Impedance spectroscopy. Wiley. https://doi.org/10.1002/9781118164075

  28. Materials Data on Ba7Nb4MoO20 by Materials Project. https://doi.org/10.17188/1704365

Download references

Acknowledgements

Authors acknowledge the support of USIC, and DU for providing the experimental facilities. Authors are also appreciative to SERB for providing the funding support through the ECR project [ECR/2016/001152].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghvendra Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saini, P., Tarique, H., Kumar, H., Singh, A.K., Pandey, R., Singh, P. (2024). Synthesis and Characterizations of Hexagonal Perovskite-Related Oxide for Solid Electrolyte Application. In: Krupanidhi, S.B., Sharma, A., Singh, A.K., Tuli, V. (eds) Recent Advances in Functional Materials and Devices. AFMD 2023. Springer Proceedings in Materials, vol 37. Springer, Singapore. https://doi.org/10.1007/978-981-99-6766-7_1

Download citation

Publish with us

Policies and ethics