Skip to main content
Log in

Effects of electron irradiation on analog and linearity performance of InP-based HEMT

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the effect of electron irradiation on analog and linearity performance for InP-based HEMT is investigated. The electron energy and fluence are 1 MeV and 1 × 1016 cm−2, respectively. The results show that the analog performance parameters, such as gm, gd, and TFG, indicate different variation trends after electron irradiation. Specifically, gm and gd are reduced, while TGF is increased. Therefore, the analog performance is improved for InP-based HEMT after electron irradiation. In addition, linearity metrics such as gm2, gm3, VIP2, VIP3, IIP3, and IMD3 have also been analyzed. The results indicate that the linearity performance improves for the device after electron irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the manuscript.

References

  1. J. Ajayan, D. Nirmal, R. Mathew, D. Kurian, P. Mohankumar, L. Arivazhagan, D. Ajitha, A critical review of design and fabrication challenges in InP HEMTs for future terahertz frequency applications. Mater. Sci. Semicond. Process.Semicond. Process. 128, 105753 (2021)

    Article  Google Scholar 

  2. A. Salmanogli, Quantum correlation of microwave two-mode squeezed state generated by nonlinearity of InP HEMT. Sci. Rep. 13, 11528 (2023)

    Article  ADS  Google Scholar 

  3. S. Bhattacharya, J. Ajayan, D. Nirmal, S. Tayal, S. Kollem, L.M.I. Leo Joseph, Investigation on DC/RF performance of LG = 19 nm heterogeneous integrated Ga0.15In0.85As/InAs/Ga0.15In0.85As composite channel InP HEMT on silicon substrate for future beyond 5G and quantum computing applications. SILICON 14, 9581–9588 (2022)

    Article  Google Scholar 

  4. I.H. Rodrigues, A. Vorobiev, Low-field mobility and high-field velocity of charge carriers in InGaAs/InP high-electron-mobility transistors. IEEE Trans. Electron Devices 69(4), 1786–1790 (2022)

    Article  ADS  Google Scholar 

  5. Y. Chen, L.A. Yang, H.B. Yue, Y.C. Liu, Z. Jin, Y.B. Su, Y. Hao, Investigation on effect of doped InP subchannel thickness and delta-doped InP layer of composite channel HEMT. IEEE Trans. Electron Devices 69(3), 988–993 (2022)

    Article  ADS  Google Scholar 

  6. S.R. Cao, R.Z. Feng, F.G. Zhou, Z.Y. Feng, P. Ding, Y.B. Su, Z. Jin, Performance improvement by SiO2 Hardmask in 100-nm InP-based HEMTs for TMIC applications. IEEE Trans. Electron Devices 70(5), 2262–2267 (2023)

    Article  ADS  Google Scholar 

  7. S. Sun, L. Liu, H. Wu, R. Yao, H. Mei, H. Wen, Y. Zhong, Characterization of single event effect simulation in InP-based high electron mobility transistors. Results Phys. 36, 105467 (2022)

    Article  Google Scholar 

  8. X.Q. Zhao, B. Mei, P. Ding, J.L. Zhang, S.H. Meng, C. Zhang, L.H. Ma, S.X. Sun, Y.H. Zhong, Z. Jin, Thermal annealing behavior of InP-based HEMT damaged by proton irradiation. Solid State Electron. 193, 108287 (2022)

    Article  Google Scholar 

  9. Q.X. Li, B. Li, L. Wang, Z.M. Zheng, B.P. Zhang, N.Y. Liu, B.H. Li, M.X. Liu, Y. Huang, Z. Gong, Z.T. Chen, X.Y. Liu, J.J. Luo, Z.S. Han, Comparison of 10 MeV electron beam radiation effect on InGaN/GaN and GaN/AlGaN multiple quantum wells. J. Lumin.Lumin. 210, 169–174 (2019)

    Article  ADS  Google Scholar 

  10. S.J. Pearton, F. Ren, M.E. Erin Patrick, A.Y.P. Law, Review—ionizing radiation damage effects on GaN devices. ECS J. Solid State Sci. Technol. 5(2), Q35–Q60 (2016)

    Article  Google Scholar 

  11. Y.H. Zhong, B. Yang, M.M. Chang, P. Ding, L.H. Ma, M.K. Li, Z.Y. Duan, J. Yang, Z. Jin, Z.C. Wei, Enhancement of radiation hardness of InP-based HEMT with double Si-doped plane. Chin. Phys. B 29(3), 038502 (2020)

    Article  ADS  Google Scholar 

  12. J.L. Zhang, P. Ding, B. Mei, S.H. Meng, C. Zhang, L.H. Ma, Z. Jin, Y. Sun, H. Ming Zhang, Y.-H. Zhong, The effects and mechanisms of 2 MeV proton irradiation on InP-based high electron mobility transistors. Appl. Phys. Lett. 120, 103501 (2022)

    Article  ADS  Google Scholar 

  13. J.J. Zhang, P. Ding, Y.N. Jin, S.H. Meng, X.Q. Zhao, Y.F. Hu, Y.H. Zhong, Z. Jin, A comparative study on radiation reliability of composite channel InP high electron mobility transistors. Chin. Phys. B 30(7), 070702 (2021)

    Article  ADS  Google Scholar 

  14. J.L. Zhang, B. Mei, Y.B. Su, F. Yang, Z. Jin, Y.H. Zhong, Influence of BCB protection on irradiation response of InP-based HEMTs: a comparative study. IEEE Trans. Electron Devices 70(8), 4225–4230 (2023)

    Article  ADS  Google Scholar 

  15. E.M. Jackson, B.D. Weaver, R. Wilkins, S. Shojah-Ardalan, R. Wilkins, A.C. Seabaugh, B. Brar, Irradiation effects in InGaAs/InAlAs high electron mobility transistors. Appl. Phys. Lett. 79(14), 2280 (2001)

    Article  ADS  Google Scholar 

  16. E. Datta, A. Chattopadhyay, A. Mallik, A Comparison of analog performance, linearity, and distortion characteristics between symmetric InGaAs and asymmetric InGaAs/InP MOSFETs. IEEE Trans. Electron Devices 68(4), 1570–1576 (2021)

    Article  ADS  Google Scholar 

  17. Y.T. Jia, Q. Wang, C.X. Chen, C. Feng, W. Li, L.J. Jiang, H.L. Xiao, Q. Wang, X.G. Xu, X.L. Wang, Simulation of a parallel dual-metal-gate structure for AlGaN/GaN high-electron-mobility transistor high linearity applications. Phys. Status Solidi A 18, 2100151 (2021)

    Article  Google Scholar 

  18. L.X. Geng, H.D. Zhao, K.K. Yu, X.L. Ren, D.X. Yang, Y.H. Song, Analysis of InGaN back-barrier on linearity and RF performance in a graded-channel HEMT. J. Electron. Mater. 52, 1426–1436 (2023)

    Article  ADS  Google Scholar 

  19. S.X. Sun, P. Ding, Z. Jin, Y.H. Zhong, Y.X. Li, Z.C. Wei, Effect of electron irradiation fluence on InP-based high electron mobility transistors. Nanomaterials 9, 967 (2019)

    Article  Google Scholar 

  20. S.X. Sun, B. Yang, Y.H. Zhong, Y.X. Li, P. Ding, Z. Jin, Z.C. Wei, Degradation mechanisms of InP-based high-electron-mobility transistors under 1 MeV electron irradiation. J. Phys. D Appl. Phys. 53, 175107 (2020)

    Article  ADS  Google Scholar 

  21. S. Chaudhary, B. Dewan, D. Singh, C. Sahu, M. Yadav, Impact of interface trap charges on analog/RF and linearity performances of PGP negative capacitance FET. Microelectron. Reliab.. Reliab. 143, 114954 (2023)

    Article  Google Scholar 

  22. X.W. Hu, P.K. Aditya, B. Jun, M.F. Daniel, D.S. Ronald, D.G. Robert, A.W. Robert, D.W. Brad, B. Mykola, J.B. Leonard, K.M. Umesh, Proton-irradiation effects on AlGaN/AlN/GaN high electron mobility transistors. IEEE Trans. Nucl. Sci.Nucl. Sci. 50, 1791 (2003)

    Article  ADS  Google Scholar 

  23. S.K. Swain, S.K. Das, S. Adak, Study of linearity performance of graded channel gate stacks double gate MOSFET with respect to High-K oxide thickness. SILICON 12, 1567–1574 (2020)

    Article  Google Scholar 

  24. R. Ranjan, N. Kashyap, A. Raman, Design and investigation of field plate-based vertical GAA–β-(AlGa)2O3/Ga2O3 high electron mobility transistor. Micro Nanostruct 164, 107117 (2022)

    Article  Google Scholar 

  25. S.S.C. Seema, Linearity performance analysis of double gate (DG) VTFET using HDB for RF applications. SILICON 13, 1121–1125 (2021)

    Article  Google Scholar 

  26. S. Kumar, D.S. Yadav, Assessment of interface trap charges on proposed TFET for low power high-frequency application. SILICON 14, 9291–9304 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 62204094, in part by the China Postdoctoral Science Foundation under Grant 2021M700685, in part Henan Provincial Science and Technology Research Project under Grant 232102210173, 232102311204, 162102210111, in part by the Henan Province Joint Fund Project of Science and Technology under Grant 225200810085 and in part Henan Higher Education Teching Reform Planunder Project under Grant 2021SJGLX533.

Author information

Authors and Affiliations

Authors

Contributions

SS: data curation; formal analysis; YZ: investigation; validation; SS and RY: writing original draft; HW: writing, review and editing; conceptualization.

Corresponding authors

Correspondence to Shuxiang Sun, Yinghui Zhong or Ruxian Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Zhong, Y., Yao, R. et al. Effects of electron irradiation on analog and linearity performance of InP-based HEMT. Appl. Phys. A 129, 776 (2023). https://doi.org/10.1007/s00339-023-07072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07072-4

Keywords

Navigation