Skip to main content
Log in

Influence of structural properties on the electrochemical performance of FTO/CuO double-layer thin-film spray-deposited from different precursor solutions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An FTO thin film was first deposited onto a glass substrate via the spray pyrolysis technique. To investigate the influence of the used salt and, consequently, structural properties on electrochemical performance, two precursor solutions were prepared from copper chloride dihydrate and copper acetate monohydrate and spray-deposited onto the FTO thin films. Considerable differences were observed in the physical characteristics of the resulting CuO thin films derived from different precursor solutions. The XRD results were employed to estimate the crystallite size and strain for the prepared CuO thin films via the Williamson–Hall method, as well as lattice parameters. Accordingly, the CuO thin film deposited from chlorine salt showed a greater crystallite size, lower strain, and unit volume cell. The Hall effect measurement revealed that there is slightly less resistivity for the CuO prepared from chlorine salt; however, mobility and carrier concentration were significantly different for the CuO thin films. The Randles–Sevcik equation was used to calculate the diffusion coefficient, and it is found that the structural characteristics of CuO grown from acetate salt (6.43 × 10–6 cm2/s) are in favor of better ion diffusion in compare with chloride salt (4.72 × 10–6 cm2/s). Similarly, the estimated equivalent distribution resistance from the Nyquist plot for CuO thin films spray-deposited from chlorine (250.11 Ω) and acetate (130.01 Ω) confirmed the better ion diffusion for the acetate solution-derived CuO thin film. Capacitance was calculated from cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy, all of which confirmed better ion storage performance in CuO deposited from acetate salt due to the superior ion diffusion characteristics of the mentioned thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data and code availability

The data that support the findings of this study are available in the manuscript.

References

  1. Y.K. Jeong, G.M. Choi, J. Phys. Chem. Solids 57, 81 (1996). https://doi.org/10.1016/0022-3697(95)00130-1

    Article  ADS  Google Scholar 

  2. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, Prog. Mater. Sci. 60, 208 (2014). https://doi.org/10.1016/j.pmatsci.2013.09.003

    Article  Google Scholar 

  3. H.Z. Asl, S.M. Rozati, J. Electron. Mater. 46, 5020 (2017). https://doi.org/10.1007/s11664-017-5510-0

    Article  ADS  Google Scholar 

  4. T. Terasako, T. Murakami, A. Hyodou, S. Shirakata, Sol. Energy Mater. Sol. Cells 132, 74 (2015). https://doi.org/10.1016/j.solmat.2014.08.023

    Article  Google Scholar 

  5. H.Z. Asl, S.M. Rozati, J. Mater. Sci. Mater. Electron. 29, 4365 (2018). https://doi.org/10.1007/s10854-017-8385-1

    Article  Google Scholar 

  6. D. Wojcieszak, A. Obstarczyk, E. Mańkowska, M. Mazur, D. Kaczmarek, K. Zakrzewska, P. Mazur, J. Domaradzki, Mater. Res. Bull. 147, 111646 (2022). https://doi.org/10.1016/j.materresbull.2021.111646

    Article  Google Scholar 

  7. B.S. Kang, S.-E. Ahn, M.-J. Lee, G. Stefanovich, K.H. Kim, W.X. Xianyu, C.B. Lee, Y. Park, I.G. Baek, B.H. Park, Adv. Mater. 20, 3066 (2008). https://doi.org/10.1002/adma.200702932

    Article  Google Scholar 

  8. S.K. Shinde, S.M. Mohite, A.A. Kadam, H.M. Yadav, G.S. Ghodake, K.Y. Rajpure, D.S. Lee, D.Y. Kim, J. Electroanal. Chem. 850, 113433 (2019). https://doi.org/10.1016/j.jelechem.2019.113433

    Article  Google Scholar 

  9. S.K. Shinde, D.Y. Kim, G.S. Ghodake, N.C. Maile, A.A. Kadam, D.S. Lee, M.C. Rath, V.J. Fulari, Ultrason. Sonochem. 40, 314 (2018). https://doi.org/10.1016/j.ultsonch.2017.07.014

    Article  Google Scholar 

  10. L. Filipovic, S. Selberherr, G.C. Mutinati, E. Brunet, S. Steinhauer, A. Köck, J. Teva, J. Kraft, J. Siegert, F. Schrank, Microelectron. Eng. 117, 57 (2014). https://doi.org/10.1016/j.mee.2013.12.025

    Article  Google Scholar 

  11. S. RahemiArdekani, A. Sabour RouhAghdam, M. Nazari, A. Bayat, E. Yazdani, E. Saievar-Iranizad, J. Anal. Appl. Pyrolysis 141, 104631 (2019). https://doi.org/10.1016/j.jaap.2019.104631

    Article  Google Scholar 

  12. H.Z. Asl, S.M. Rozati, J. Electron. Mater. 47, 3568 (2018). https://doi.org/10.1007/s11664-018-6201-1

    Article  ADS  Google Scholar 

  13. S. Jongthammanurak, M. Witana, T. Cheawkul, C. Thanachayanont, Mater. Sci. Semicond. Process. 16, 625 (2013). https://doi.org/10.1016/j.mssp.2012.11.009

    Article  Google Scholar 

  14. R.J. Deokate, A.V. Moholkar, G.L. Agawane, S.M. Pawar, J.H. Kim, K.Y. Rajpure, Appl. Surf. Sci. 256, 3522 (2010). https://doi.org/10.1016/j.apsusc.2009.12.102

    Article  ADS  Google Scholar 

  15. C. Abdelmounaïm, Z. Amara, A. Maha, D. Mustapha, Mater. Sci. Semicond. Process. 43, 214 (2016). https://doi.org/10.1016/j.mssp.2015.12.019

    Article  Google Scholar 

  16. H.Z. Asl, S.M. Rozati, J. Mater. Sci. Mater. Electron. 31, 2537 (2020). https://doi.org/10.1007/s10854-019-02790-z

    Article  Google Scholar 

  17. H.Z. Asl, S.M. Rozati, Appl. Phys. A 125, 689 (2019). https://doi.org/10.1007/s00339-019-2943-8

    Article  ADS  Google Scholar 

  18. H.Z. Asl, S.M. Rozati, Mater. Res. Ibero. Am. J. (2018). https://doi.org/10.1590/1980-5373-MR-2017-0754

    Article  Google Scholar 

  19. H.Z. Asl, S.M. Rozati, J. Electron. Mater. 49, 1534 (2019). https://doi.org/10.1007/s11664-019-07858-4

    Article  ADS  Google Scholar 

  20. T.Y. Tiong, C.F. Dee, A.A. Hamzah, B.Y. Majlis, S. Abdul Rahman, Sens. Actuators B Actuators B 202, 1322 (2014). https://doi.org/10.1016/j.snb.2014.05.126

    Article  Google Scholar 

  21. D. Nath, F. Singh, R. Das, Mater. Chem. Phys. 239, 122021 (2020). https://doi.org/10.1016/j.matchemphys.2019.122021

    Article  Google Scholar 

  22. I. Singh, R.K. Bedi, Appl. Surf. Sci. 257, 7592 (2011). https://doi.org/10.1016/j.apsusc.2011.03.133

    Article  ADS  Google Scholar 

  23. H. Liu, X. Wang, M. Li, S. Yu, R. Zheng, Ceram. Int. 45, 14347 (2019). https://doi.org/10.1016/j.ceramint.2019.04.149

    Article  Google Scholar 

  24. Y. Kajikawa, J. Appl. Phys. 114, 053707 (2013). https://doi.org/10.1063/1.4817243

    Article  ADS  Google Scholar 

  25. D. Wu, Q. Zhang, M. Tao, Phys. Rev. B 73, 235206 (2006). https://doi.org/10.1103/PhysRevB.73.235206

    Article  ADS  Google Scholar 

  26. R. Shabu, A.M.E. Raj, C. Sanjeeviraja, C. Ravidhas, Mater. Res. Bull. 68, 1 (2015). https://doi.org/10.1016/j.materresbull.2015.03.016

    Article  Google Scholar 

  27. T. Parvathy, N.A. Muhammed Sabeer, N. Mohan, P.P. Pradyumnan, Opt. Mater. 125, 112031 (2022). https://doi.org/10.1016/j.optmat.2022.112031

    Article  Google Scholar 

  28. H.Z. Asl, S.M. Rozati, J. Mater. Sci. Mater. Electron. 31, 14537 (2020). https://doi.org/10.1007/s10854-020-04014-1

    Article  Google Scholar 

  29. H. Mersian, M. Alizadeh, Ceram. Int. 46, 17197 (2020). https://doi.org/10.1016/j.ceramint.2020.03.275

    Article  Google Scholar 

  30. W. Li, J.D. Patterson, Phys. Rev. B 50, 14903 (1994). https://doi.org/10.1103/PhysRevB.50.14903

    Article  ADS  Google Scholar 

  31. H. Zare Asl, S.M. Rozati, Chem. Phys. Lett. Phys. Lett. 815, 140364 (2023). https://doi.org/10.1016/j.cplett.2023.140364

    Article  Google Scholar 

  32. G. Wang, J. Huang, S. Chen, Y. Gao, D. Cao, J. Power. Sources 196, 5756 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.049

    Article  ADS  Google Scholar 

  33. M. Divagar, N. Ponpandian, C. Viswanathan, Mater. Sci. Eng. B. Sci. Eng. B 270, 115229 (2021). https://doi.org/10.1016/j.mseb.2021.115229

    Article  Google Scholar 

  34. R. Kumar, A. Agrawal, T. Bhuvana, A. Sharma, Electrochim. Acta 270, 87 (2018). https://doi.org/10.1016/j.electacta.2018.03.076

    Article  Google Scholar 

  35. D. Shen, K. Steinberg, R. Akolkar, J. Electrochem. Soc. 165, E808 (2018). https://doi.org/10.1149/2.1011814jes

    Article  Google Scholar 

  36. A.M. Teli, T.S. Bhat, S.A. Beknalkar, S.M. Mane, L.S. Chaudhary, D.S. Patil, S.A. Pawar, H. Efstathiadis, J. Cheol Shin, Chem. Eng. J. Eng. J. 430, 133138 (2022). https://doi.org/10.1016/j.cej.2021.133138

    Article  Google Scholar 

  37. M.A. Yewale, R.A. Kadam, N.K. Kaushik, L.N. Nguyen, U.T. Nakate, L.P. Lingamdinne, J.R. Koduru, P.S. Auti, S.V.P. Vattikuti, D.K. Shin, Colloids Surf. A 653, 129901 (2022). https://doi.org/10.1016/j.colsurfa.2022.129901

    Article  Google Scholar 

  38. A. Hagfeldt, M. Graetzel, Chem. Rev. 95, 49 (1995). https://doi.org/10.1021/cr00033a003

    Article  Google Scholar 

  39. J.A. Rajesh, J.Y. Park, S.H. Kang, K.-S. Ahn, Electrochim. Acta 414, 140203 (2022). https://doi.org/10.1016/j.electacta.2022.140203

    Article  Google Scholar 

  40. M.R. Waikar, A.A. Shaikh, R.G. Sonkawade, Vacuum 161, 168 (2019). https://doi.org/10.1016/j.vacuum.2018.12.034

    Article  ADS  Google Scholar 

  41. X. Liu, Z. Chang, L. Luo, T. Xu, X. Lei, J. Liu, X. Sun, Chem. Mater. 26, 1889 (2014). https://doi.org/10.1021/cm4040903

    Article  Google Scholar 

  42. H. Behzad, F.E. Ghodsi, J. Mater. Sci. Mater. Electron. 27, 6096 (2016). https://doi.org/10.1007/s10854-016-4535-0

    Article  Google Scholar 

  43. H.Z. Asl, S.M. Rozati, J. Alloys Compd. 928, 167211 (2022). https://doi.org/10.1016/j.jallcom.2022.167211

    Article  Google Scholar 

  44. H. Behzad, F.E. Ghodsi, H. Karaağaç, Ionics 23, 2429 (2017). https://doi.org/10.1007/s11581-017-2081-2

    Article  Google Scholar 

  45. I.V. Esarev, D.V. Agafonov, Y.V. Surovikin, S.N. Nesov, A.V. Lavrenov, Electrochim. Acta 390, 138896 (2021). https://doi.org/10.1016/j.electacta.2021.138896

    Article  Google Scholar 

  46. B.-A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, J. Phys. Chem. C 122, 194 (2018). https://doi.org/10.1021/acs.jpcc.7b10582

    Article  Google Scholar 

  47. H. Wang, L. Pilon, Electrochim. Acta 76, 529 (2012). https://doi.org/10.1016/j.electacta.2012.05.039

    Article  Google Scholar 

  48. C. Lei, F. Markoulidis, Z. Ashitaka, C. Lekakou, Electrochim. Acta 92, 183 (2013). https://doi.org/10.1016/j.electacta.2012.12.092

    Article  Google Scholar 

Download references

Acknowledgements

The authors thanks Behbahan Khatam Alanbia university of technology for financial support (Grant Numbers 3.2.5560).

Author information

Authors and Affiliations

Authors

Contributions

HZA: conceptualization, methodology, validation, investigation, resources, writing—original draft preparation, visualization. SMR: conceptualization, resources, writing—review and editing.

Corresponding author

Correspondence to Hassan Zare Asl.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asl, H.Z., Rozati, S.M. Influence of structural properties on the electrochemical performance of FTO/CuO double-layer thin-film spray-deposited from different precursor solutions. Appl. Phys. A 129, 786 (2023). https://doi.org/10.1007/s00339-023-07070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07070-6

Keywords

Navigation