Skip to main content
Log in

Structural characterization and enhanced magnetic and dielectric properties of Ce3+ substituted Co–Cr–Fe–O nano-ferrites synthesized using sol–gel method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Unique and novel size dependent structural and physical properties with wide applications attracts the interest of scientific community to study of rare earth doped spinel ferrites. In the present investigation, sol–gel auto-ignition process was employed to synthesize the compositions CoCr0.2CexFe1.8−xO4 (x = 0.0, 0.025, 0.050, 0.075, 0.1) sintered at significant temperature of 800 °C for 6 h. The structure and phase purity of the samples was analysed by using X-ray diffraction (XRD) technique. Increasing cerium concentration enhances the lattice lengths of cubic spinels from 8.3839 to 8.3965 Å. The cation distribution suggests that the Co2+ ions occupy octahedral–B site and larger Ce3+ ions replace smaller Fe3+ ions at octahedral-B sites. Fourier transform infrared spectra (FTIR) confirmed the metal–oxygen (M–O) stretching bonds at tetrahedral–A and octahedral–B sites confirming the spinel structure of the samples. Elastic parameters were determined from FTIR data and have been studied in the light of Ce3+ substitution. Surface morphology of the samples have been studied by using scanning electron microscopy and transmission electron microscopy which reveals the narrow size distribution with nanoparticles of size nearly 50 nm. Vibrating sample magnetometry (VSM) technique was employed to understand the magnetic behaviour of the samples, where the room temperature saturation magnetization was decreased from 72.07 to 65.86 emu/g and coercivity increased from 277 to 918 Oe with Ce3+ substitution. Frequency dependent dielectric parameters like Dielectric constant, dielectric loss and dielectric loss tangent shows decreasing trend with the increase of frequency. Substituting Fe3+ with Ce3+ reduced saturation magnetization and raised coercive field, suggesting suitability for permanent magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Yes.

References

  1. V.D. More, R.B. Borade, K.R. Desai, V.K. Barote, S.S. Kadam, V.S. Shinde, D.R. Kulkarni, R.H. Kadam, Site occupancy, surface morphology and mechanical properties of Ce3+ added Ni-Mn-Zn ferrite nanocrystals synthesized via sol-gel route. NANO 16, 2150059 (2021)

    Google Scholar 

  2. K. Tanbir, M.P. Ghosh, R.K. Singh, M. Kar, S. Mukherjee, Effect of doping different rare earth ions on microstructural, optical, and magnetic properties of nickel–cobalt ferrite nanoparticles. J. Mater. Sci. 31, 435–443 (2020)

    Google Scholar 

  3. K.R. Desai, S.T. Alone, S.R. Wadgane, S.E. Shirsath, K.M. Batoo, A. Imran, E.H. Raslan, M. Hadi, M.F. Ijaz, R.H. Kadam, X-ray diffraction-based Williamson-Hall analysis and rietveld refinement for strain mechanism in Mg – Mn co-substituted CdFe2O4 nanoparticles. Physica B B 614, 413054 (2021)

    Google Scholar 

  4. A.S. Gaikwad, S.E. Shirsath, S.R. Wadgane, R.H. Kadam, J. Shah, R.K. Kotnala, A.B. Kadam, Magneto-electric coupling and improved dielectric constant of BaTiO3 and Fe-rich (Co0.7Fe2.3O4) ferrite nano-composites. J. Magn. Magn. Mater.Magn. Magn. Mater. 465, 508–514 (2018)

    ADS  Google Scholar 

  5. D. Carta, M.F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, A. Corrias, A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M=Mn Co, Ni). J. Phys. Chem. C 113, 8606–8615 (2009)

    Google Scholar 

  6. W. Kuang, H. Wang, X. Li, J. Zhang, Q. Zhou, Y. Zhao, Application of the thermodynamic external principle to diffusion–controlled phase transformations in Fe-C-X alloys: modelling and applications. Acta Mater. Mater. 159, 16–30 (2018)

    ADS  Google Scholar 

  7. Y. Zhao, B. Zhang, H. Hou, W. Chen, M. Wang, Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process. J. Mater. Sci. Technol. 35, 1044–1052 (2019)

    Google Scholar 

  8. G.B. Todkar, R.A. Kunale, R.N. Kamble, K.M. Batoo, M.F. Ijaz, A. Imran, M. Hadi, E.H. Raslan, S.E. Shirsath, R.H. Kadam, Ce-Dy substituted barium hexaferrite nanoparticles with large coercivity for permanent magnet and microwave absorber application. J. Phys. D Appl. Phys. 54, 294001 (2021)

    Google Scholar 

  9. M. Li, Q. Guo, L. Chen, L. Li, H. Hou, Y. Zhao, Microstructure and properties of graphene nanoparticles reinforced AZ91D matrix composites prepared by electromagnetic stirring casting. J. Mater. Res. Technol. 21, 4138–4150 (2022)

    Google Scholar 

  10. A.S. Gaikwad, R.H. Kadam, S.E. Shirsath, S.R. Wadgane, J. Shah, R.K. Kotnala, A.B. Kadam, Surprisingly high magneto-electric coupling in cubic Co0.7Fe2.3O4–SrTiO3 nano-composites. J. Alloys Comp. 773, 564–570 (2019)

    Google Scholar 

  11. S.E. Jacobo, S. Duhalde, H.R. Bertorello, Rare earth influence on the structural and magnetic properties of NiZn ferrites. J. Magn. Magn. Mater. 272–276, 2253–2254 (2004)

    ADS  Google Scholar 

  12. T. Dippong, I.G. Deac, O. Cadar, E.A. Level, Effect of silica embedding on the structure, morphology and magnetic behaviour of (Zn0.6Mn0.4Fe2O4)δ/(SiO2)(100-δ) nanoparticles. Nanomaterials 11, 2232 (2021)

    Google Scholar 

  13. R. Shitole, V.K. Barote, M.L. Mane, S.T. Alone, K.M. Batoo, S. Hussain, R.H. Kadam, Elastic and dielectric properties of nano-crystalline Dy3+ substituted zinc-chromium ferrite. J. Mater. Sci. 34, 1106 (2023)

    Google Scholar 

  14. K. Wang, J. Zhu, H. Wang, K. Yang, Y. Zhu, Y. Qing, Z. Ma, L. Gao, Y. Liu, S. Wei, Y. Shu, Y. Zhou, J. He, Air plasma-sprayed high entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 coating with high thermal protection performance. J. Adv. Ceram. 11, 1571–1582 (2022)

    Google Scholar 

  15. T. Dippong, E.A. Levei, D. Toloman, L.B. Tudoran, O. Cadar, Investigation on the formation, structural, and photocatalytic properties of mixed Mn-Zn ferrites nanoparticles embedded in SiO2 matrix. J. Anal. Appl. Pyrol.Pyrol. 158, 105281 (2021)

    Google Scholar 

  16. S. Singhal, S. Jauhar, J. Singh, K. Chandra, S. Bansal, Investigations of structural, magnetic, electrical and optical properties of chromium substituted cobalt ferrite (CoCrxFe2-xO4, 0 ≤ x ≤ 1) synthesized using sol-gel auto combustion method. J. Mol. Struct. 1012, 182–188 (2012)

    ADS  Google Scholar 

  17. G. Zhang, J. Chen, Z. Zhang, M. Sun, Y. Yu, J. Wang, S. Cai, A novel parametric model for nonlinear hysteretic behaviours with strain-stiffening of magnetorheological gel composite. Comp. Struct. 318, 117082 (2023)

    Google Scholar 

  18. R.H. Kadam, R. Shitole, S.B. Kadam, K.R. Desai, A.P. Birajdar, V.K. Barote, K.M. Batoo, S. Hussain, S.E. Shirsath, A thorough investigation of Rare-Earth Dy3+ substituted cobalt-chromium ferrite and its magnetoelectric nanocomposites. Nanomaterials 13, 1165 (2023)

    Google Scholar 

  19. S.K. Gurav, S.E. Shirsath, R.H. Kadam, D.R. Mane, Low temperature synthesis of Li0.5ZrxCoxFe2.52xO4 powder and their characterization. Powd. Technol. 235, 485–492 (2013)

    Google Scholar 

  20. S.D. Balsure, V.D. More, S.S. Kadam, R.H. Kadam, A.B. Kadam, Synthesis, structural, magnetic, dielectric and optical properties of Co doped Cr-Zn oxide nanoparticles for spintronic devices. Eng. Sci. 21, 774 (2023)

    Google Scholar 

  21. R.S. Yadav, I. Kuritka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, J. Svec, V. Enev, M. Hajduchova, Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method. Adv. Nat. Sci. 8, 045002 (2017)

    Google Scholar 

  22. M.A. Munir, M.Y. Naz, S. Shukrullah, M.T. Ansar, M.U. Farooq, M. Irfan, S.N.F. Mursal, S. Legutko, J. Petru, M. Pagac, Enhancement of magnetic and dielectric properties of Ni0.25Cu0.25Zn0.50Fe2O4 magnetic nanoparticles through non-thermal microwave plasma treatment for high–frequency and energy storage applications. Materials 15, 6890 (2022)

    ADS  Google Scholar 

  23. M. Islam, M.K.R. Khan, A. Kumar, M.M. Rahman, M.A. Mamun, R. Rashid, M.M. Haque, M.S.I. Sarkar, Sol-gel route for the synthesis of CoFe2-xErxO4 nanocrystalline ferrites and the investigation of structural and magnetic properties for magnetic device applications. ACS Omega 7, 20731–20740 (2022)

    Google Scholar 

  24. A. Saleem, Y. Zhang, H. Gong, M.K. Majeed, J. Jing, X. Lin, J. Mao, M.Z. Ashfaq, Structural, magnetic and dielectric properties of nano-crystalline spinel NixCu1-xFe2O4. J. Alloys. Comp. 825, 154017 (2020)

    Google Scholar 

  25. A.B. Abu Hammad, A. Elzwawy, A.M. Mansour, M.M. Alam, A.M. Asiri, M.R. Karim, M.M. Rahman, A.M. El Nahrawy, Detection of 3, 4 – diaminotoluene based on Sr0.3Pb0.7TiO3/CoFe2O4 core/shell nanocomposite via an electrochemical approach. New J. Chem. 44, 7941–7953 (2020)

    Google Scholar 

  26. T. Dippong, E.A. Levei, O. Cadar, Investigation of structural, morphological and magnetic properties of MFe2O4 (M = Co, Ni, Zn, Cu, Mn) obtained by thermal decomposition. Int. J. Mol. Sci. 23, 8483 (2022)

    Google Scholar 

  27. T. Dippong, E.A. Levei, O. Cadar, I.G. Deac, M. Lazar, G. Borodi, I. Petean, Effect of amorphous SiO2 matrix on structural and magnetic properties of Cu0.6Co0.4Fe2O4/SiO2 nanocomposites. J. Alloy. Comp. 849, 156695 (2020)

    Google Scholar 

  28. A. Radon, M.K. Gawel, D. Lukowiec, P. Gebara, K.C. Andraczke, A.K. Burian, P. Wlodarczyk, M. Polak, R. Babilas, Influence of magnetic nanoparticles shape and spontaneous surface oxidation on the electron transport mechanism. Materials 14, 5241 (2021)

    ADS  Google Scholar 

  29. A. Radon, J. Kubacki, M.K. Gawel, P. Gebara, L. Hawetek, S. Topolska, D. Lukowiec, Structure and magnetic properties of ultrafine superparamagnetic Sn – doped magnetite nanoparticles synthesized by glycol assisted co-precipitation method. J. Phys. Chem. Solid 145, 109530 (2020)

    Google Scholar 

  30. A. Radon, S. Lonski, M.K. Gawel, P. Gebara, M. Lis, D. Lukowiec, R. Babilas, Influence of magnetite nanoparticles surface dissolution, stabilization and functionalization by malonic acid on the catalytic activity, magnetic and electrical properties. Colloid. Surf. A 607, 125446 (2020)

    Google Scholar 

  31. R.S. Yadav, J. Havlica, I. Kuritka, Z. Kozakova, M. Palou, E. Bartonickova, M. Bohac, F. Frajkorova, J. Masilko, L. Kalina, M. Hajduchova, V. Enev, J. Wasserbauer, J. Supercond. Nov. Magn.Supercond. Nov. Magn. 28, 2097 (2015)

    Google Scholar 

  32. D.M. Ghone, V.L. Mathe, K.K. Patankar, S.D. Kaushik, Microstructure, lattice strain, magnetic and magnetostriction properties of holmium substituted cobalt ferrite obtained by co-precipitation method. J. Alloys. Compos. 739, 52–61 (2018)

    Google Scholar 

  33. M.N. Akthar, A.A. Khan, M.N. Akhtar, M. Ahmad, M.A. Khan, Structural Rietveld refinement, morphological and magnetic features of Cu doped Co-Ce nanocrystalline ferrites for high frequency applications. Physica B B 561, 121–131 (2019)

    ADS  Google Scholar 

  34. A.K. Azad, S.G. Eriksson, S.M. Yunus, J. Eriksen, H. Rundlof, Synthesis, cation distribution and crystal structure of the spinel type solid solution GaxCoFe1-xCrO4 (0 ≤ x ≤ 1). Physica B B 327, 1–8 (2003)

    ADS  Google Scholar 

  35. S.E. Shirsath, S.S. Jadhav, B.G. Toksha, S.M. Patange, K.M. Jadhav, Influence of Ce4+ ions on the structural and magnetic properties of NiFe2O4. J. Appl. Phys. 110, 013914-1–13918 (2011)

    ADS  Google Scholar 

  36. R.H. Kadam, R. Shitole, S.B. Kadam, K. Desai, A.P. Birajdar, V.K. Barote, K.M. Batoo, S. Hussain, S.E. Shirsath, A thorough investigation of rare-Earth Dy3+ substituted cobalt-chromium ferrite and its magnetoelectric nanocomposite. Nanomaterials 13, 1165 (2023)

    Google Scholar 

  37. G.B. Todkar, R.A. Kunale, R.N. Kambale, K.M. Batoo, M.F. Ijaz, A. Imran, M. Hadi, E.H. Raslan, S.E. Shirsath, R.H. Kadam, Ce-Dy substituted barium hexaferrite nanoparticles with large coercivity for permanent magnet and microwave absorber application. J. Phys. D Appl. Phys. 54, 294001 (2021)

    Google Scholar 

  38. K.S. Lohar, A.M. Pachpinde, M.M. Langade, R.H. Kadam, S.E. Shirsath, Self-propagating high temperature synthesis, structural morphology and magnetic interactions in rare earth Ho3+ doped CoFe2O4 nanoparticles. J. Alloy. Compd. 604, 204–210 (2014)

    Google Scholar 

  39. R. Zakir, S.S. Iqbal, A.U. Rehman, S. Nosheen, T.S. Ahmad, N. Eshan, F. Inam, Spectral, electrical, and dielectric characterization of Ce-doped Co-Mg-Cd spinel nano-ferrites synthesized by the sol-gel auto combustion method. Ceram. Inter. 47, 28575–28583 (2021)

    Google Scholar 

  40. A.A. Birajdar, S.E. Shirsath, R.H. Kadam, S.M. Patange, D.R. Mane, A.R. Shitre, Frequency and temperature dependent electrical properties of Ni0.7Zn0.3CrxFe2-xO4 (0 ≤ x ≤ 0.5). Ceram. Inter. 38, 2963–2970 (2012)

    Google Scholar 

  41. C. Sujatha, K.V. Reddy, K.S. Babu, A.R. Reddy, K.H. Rao, Structural and magnetic properties of Mg substituted NiCuZn nano ferrites. Physica B B 407, 1232–1237 (2012)

    ADS  Google Scholar 

  42. R.H. Kadam, K.R. Desai, V.S. Shinde, M. Hashim, S.E. Shirsath, Influence of Gd3+ ion substitution on the MnCrFeO4 for their nanoparticle shape formation and magnetic properties. J. Alloys. Comp. 657, 487–494 (2016)

    Google Scholar 

  43. S. Rana, J. Philip, B. Raj, Micelle Based synthesis of cobalt ferrite nanoparticles and its characterization using Fourier transform infrared transmission spectrometry and thermogravimetry. Mater. Chem. Phys. 124, 264–269 (2010)

    Google Scholar 

  44. D. Karthickraja, S. Karthi, G.A. Kumar, D.K. Sardar, G.C. Dannangoda, K.S. Martirosyan, E.K. Girija, Fabrication of core-shell CoFe2O4@HAp nanoparticles: a novel magnetic platform for biomedical applications. New J. Chem. 43, 13584–13593 (2019)

    Google Scholar 

  45. S.S. Bhatu, V.K. Lakhani, A.R. Tanna, N.H. Vasoya, J.U. Buch, P.U. Sharma, U.N. Trivedi, H.H. Joshi, K.B. Modi, Effect of nickel substitution on structural, infrared and elastic properties of lithium ferrite. Ind. J. Pure Appl. Phys. 45, 596–608 (2007)

    Google Scholar 

  46. R.H. Kadam, R.B. Borade, M.L. Mane, D.R. Mane, K.M. Batoo, S.E. Shirsath, Structural, mechanical, dielectric properties and magnetic interactions in Dy3+ substituted Co-Cu-Zn nanoferrites. RSC Adv. 10, 27911–27922 (2020)

    ADS  Google Scholar 

  47. V.G. Patil, S.E. Shirsath, S.D. More, S.J. Shukla, K.M. Jadhav, Effect of zinc substitution on structural and elastic properties of cobalt ferrite. J. Alloys. Comp. 488, 199–203 (2009)

    Google Scholar 

  48. D.P.H. Hasselman, R.M. Fulrath, The effect of a small fraction of spherical porosity on the elastic moduli of glass. J. Am. Ceram. Soci. 47, 52–53 (1964)

    Google Scholar 

  49. I.P. Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)

    ADS  Google Scholar 

  50. C.E. Hoppe, R. Rivadulla, M.A. Lopez, M.C. Bujan, Effect of submicrometer clustering on the magnetic properties of free-standing superparamagnetic nanocomposites. J. Rivas, D. Serantes, D. Baldomir. J. Phys. Chem. C 112, 13099–13104 (2008)

    Google Scholar 

  51. T. Dippong, E.A. Levei, I.G. Deac, I. Petean, O. Cadar, Dependence of structural, morphological and magnetic properties of manganese ferrite on Ni-Mn substitution. Int. J. Mol. Sci. 23, 3097 (2022)

    Google Scholar 

  52. T. Dippong, E.A. Levei, C. Leostean, O. Cadar, Impact of annealing temperature and ferrite content embedded in SiO2 matrix on the structure, morphology and magnetic characteristics of (Co0.4Mn0.6Fe2O4)δ (SiO2)100-δ nanocomposites. J. Alloys. Comp. 868, 1503 (2021)

    Google Scholar 

  53. M.P. Ghosh, S. Mukherjee, Ce3+ doped nanocrystalline cobalt–zinc spinel ferrite: microstructural, magnetic, and optical characterizations. J. Mater. Sci. 31, 6207–6216 (2020)

    Google Scholar 

  54. M.K. Kokare, N.A. Jadhav, Y. Kumar, K.M. Jadhav, S.M. Rathod, Effect of Nd3+ doping on structural and magnetic properties of Ni0.5Co0.5Fe2O4 nanocrystalline ferrites synthesized by sol-gel auto-combustion method. J. Alloy. Comp. 748, 1053–1061 (2018)

    Google Scholar 

  55. L.B. Tahar, M. Artus, S. Ammar, L. Smiri, F. Herbst, M.-J. Vaulay, V. Richard, J.-M. Grenèche, F. Villain, F. Fievet, Magnetic properties of CoFe1.9RE0.1O4 nanoparticles (RE=La, Ce, Nd, Sm, Eu, Gd, Tb, Ho) prepared in polyol. J. Magn. Magn. Mater.Magn. Magn. Mater. 320, 3242–3250 (2008)

    ADS  Google Scholar 

  56. E. Elayakumar, A. Manikandan, A. Dinesh, K. Thanrasu, K.K. Raja, R.T. Kumar, Y. Slimani, S.K. Jaganathan, A. Baykal, Enhanced magnetic property and antibacterial biomedical activity of Ce3+ doped CuFe2O4 spinel nanoparticles synthesized by sol-gel method. J. Magn. Magn. Mater. 478, 140–147 (2019)

    ADS  Google Scholar 

  57. A. Nikumbh, R. Pawar, D. Nighot, G. Gugale, M. Sangale, M. Khanvilkar, A. Nagawade, Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J. Magn. Magn. Mater. 355, 201–209 (2014)

    ADS  Google Scholar 

  58. P. Samolia, L. Sacarescu, A.I. Borhan, D. Timpu, M. Grigoras, N. Lupu, M. Zaltariov, V. Harabagiu, Magnetic properties of nanosized Gd doped Ni-Mn-Cr ferrites prepared using sol-gel auto-combustion technique. J. Magn. Magn. Mater. 378, 92–97 (2015)

    ADS  Google Scholar 

  59. M.N. Akhtar, M.A. Khan, Effect of rare – earth doping on the structural and magnetic features of nanocrystalline spinel ferrites prepared via sol-gel route. J. Magn. Magn. Mater. 460, 268–277 (2018)

    ADS  Google Scholar 

  60. J.C. Maxwell, Electricity and magnetism, 2nd edn. (Oxford University Press, New York, 1973), p.828

    Google Scholar 

  61. K.W. Wagner, Zur Theorie der unvollkommenen dielektrika. Ann. Phys. 40, 817–855 (1913)

    MATH  Google Scholar 

  62. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121 (1951)

    ADS  Google Scholar 

  63. I. T. Rabinkin, Z. I. Novikova, Ferrites, Izv Acad, Nauk USSR Minsk, p. 146 (1960)

  64. M.B. Reddy, P.V. Reddy, Low-frequency dielectric behaviour of mixed Li-Ti ferrites. J. Phys. D Appl. Phys. 24, 975 (1991)

    ADS  Google Scholar 

Download references

Acknowledgements

Author S S Kadam is thankful to Chhatrapati Shahu Maharaj Research, Training and Human Development Institute for awarding SARTHI fellowship. Author K M Batoo is thankful to the Researchers Supporting Project Number RSP2023R148 at King Saud University, Saudi Arabia, for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

SSK: sample synthesis, writing original draft; VDM: Rietveld refinement and structural characterization; PKG: Nelson-Relay analysis and FTIR analysis with elastic properties; KMB: writing-review and editing; SH: data analysis and writing of original draft; RHK: surface morphology, analysis of magnetic properties, review and editing; SES: analysis of dielectric measurements, review and corrections; ABK: TEM analysis, review and editing.

Corresponding author

Correspondence to R. H. Kadam.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Ethical approval

This material is the authors own original work, which has not been previously published elsewhere.

Consent to participate

All the authors voluntarily agree to participate in this research study.

Consent for publication

The author grants the publisher the sole and exclusive licence of the full copyright in the Contribution, which license the Publisher hereby accepts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadam, S.S., More, V.D., Gaikwad, P.K. et al. Structural characterization and enhanced magnetic and dielectric properties of Ce3+ substituted Co–Cr–Fe–O nano-ferrites synthesized using sol–gel method. Appl. Phys. A 129, 730 (2023). https://doi.org/10.1007/s00339-023-07021-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07021-1

Keywords

Navigation