Skip to main content
Log in

Influence of Ca2+ ions substitution on structural, microstructural, electrical and magnetic properties of Mg0.2−xCaxMn0.5Zn0.3Fe2O4 ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mg–Ca–Mn–Zn ferrites having general formula Mg0.2−xCaxMn0.3Zn0.5Fe2O4 (x = 0, 0.10, 0.15 and 0.20) were synthesized using solid state reaction method and sintered at 1100 and 1200 °C for 4 h. Structural, microstructural and elemental analyses of synthesized ferrites were performed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive analysis of X-ray. A cubical spinel crystal structure with secondary phases is conformed in synthesized samples by XRD analysis. The lattice parameter decreased initially and then increases at x = 0.20 at 1100 °C. On contrary, the lattice parameter increases with Ca2+ ions concentration at 1200 °C which is attributed due to the different ionic radius of Mg2+ and Ca2+ ions. The FTIR spectra show the presence of high frequency and low frequency band at 559.36–460.14 cm−1 at 1100 °C and 549.71–558.35 cm−1 at 1200 °C corresponding to the tetrahedral and the octahedral sites. The SEM images revealed that the average grain size increases with the increase of Ca2+ ions concentration which may be attributed due to the fact that Ca2+ ions influences the microstructure by forming a liquid phase during sintering process and expedites the grain growth by lowering the rate of cation interdiffusion. Low frequency dielectric dispersion is consistent with the Maxwell–Wagner interfacial polarization. Dielectric constant increases with Ca2+ concentration for both sintering temperatures. The samples x = 0.10 and 0.15 exhibits highest conductivity at 1100 and 1200 °C, respectively because the electron hopping between Fe3+ and Fe2+ ions increases. The conduction process is attributed due to the presence of grain and grain boundary effect as revealed by the impedance study. The significant decrement in permeability with Ca2+ concentration is attributed due to the lower saturation magnetization and increased inner stress or crystal magnetic anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. O.M. Hemeda, N.Y. Mostafa, O.H.Abd. Elkader, M.A. Ahmed, J. Magn. Magn. Mater. 364, 39–46 (2014)

    Article  Google Scholar 

  2. R. Valenzuela, Phys. Res. Int. 2012, 1–9 (2012)

    Article  Google Scholar 

  3. N.M. Deraz, A. Alarifi, S.A. Shaban, J. Saudi Chem. Soc. 14, 357–362 (2010)

    Article  Google Scholar 

  4. A. Goldman, Handbook of Modern Ferromagnetic Materials. (Kluwer Academic Publishers, Boston, 1999)

    Book  Google Scholar 

  5. J. Fan, F.R. Sale, J. Eur. Ceram. Soc. 20, 2743–2751 (2000)

    Article  Google Scholar 

  6. Z. Pedzich, M.M. Bucko, M. Krolikowski, M. Bakalarska, J. Babiarz, J. Eur. Ceram. Soc. 24, 1053–1056 (2004)

    Article  Google Scholar 

  7. N.M. Deraz, A. Alarifi, Int. J. Electrochem. Sci. 7, 6501–6511 (2012)

    Google Scholar 

  8. H. Mohseni, H. Shokrollahi, I. Sharifi, Kh. Gheisari, J. Magn. Magn. Mater. 324, 3741–3747 (2012)

    Article  Google Scholar 

  9. U.R. Ghodake, N.D. Chaudhari, R.C. Kambale, J.Y. Patil, S.S. Suryavanshi, J. Magn. Magn. Mater. 407, 60–68 (2016)

    Article  Google Scholar 

  10. H. Rikukawa, U. Kihara, M. Torii, IEEE Trans. Magn. 18, 1538–1540 (1982)

    Article  Google Scholar 

  11. S.S. Gorelik, B.E. Levin, L.M. Letyuk, A.P. Nikol’skii, Sov. Phys. J. 10, 14–17 (1967)

    Article  Google Scholar 

  12. S.A.S. Ebrahimi, Z.P. Fard, Key Eng. Mater. 336–338, 699–702 (2007)

    Article  Google Scholar 

  13. J. Fan, W. Li, H. Zhao, X. Zhang, Z. Zhang, Adv. Mater. Res. 680, 31–34 (2013)

    Article  Google Scholar 

  14. M. Kolenbrander, P. Van Der Zaag, J. de Phys. IV Coll. 07(C1), C1-195–C1-196 (1997)

    Google Scholar 

  15. P.J. van der Zaag, M. Kolenbrander, M.Th. Rekveldt, J. Appl. Phys. 83, 6870–6872 (1998)

    Article  Google Scholar 

  16. B.D. Prasad, H. Nagabhushana, K. Thyagarajan, B.M. Nagabhushana, D.M. Jnaneshwara, S.C. Sharma, C. Shivakumara, N.O. Gopal, S.C. Ke, R.P.S. Chakradhar, J. Magn. Magn. Mater. 358–359, 132–141 (2014)

    Article  Google Scholar 

  17. P.P. Hankare, S.D. Jadhav, U.B. Sankpal, S.S. Chavan, K.J. Waghmare, B.K. Chougule, J. Alloys Compd. 475, 926–929 (2009)

    Article  Google Scholar 

  18. V.G. Harris, A. Geiler, Y.J. Chen, S.D. Yoon, M.Z. Wu, A. Yang, Z.H. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, C. Vittoria, J. Magn. Magn. Mater. 321, 2035–2047 (2009)

    Article  Google Scholar 

  19. C. Pasnicu, D. Condtjracre, E. Luca, Phys. Status Solidi (a) 76, 145–150 (1983)

    Article  Google Scholar 

  20. S.D. Chhaya, M.P. Pandya, M.C. Chhantbar, K.B. Modi, G.J. Baldha, H.H. Joshi, J. Alloys Compd. 377, 155–161 (2004)

    Article  Google Scholar 

  21. S.F. Wang, Y.F. Hsu, Y.X. Liu, C.K. Hsieh, J. Magn. Magn. Mater. 394, 470–476 (2015)

    Article  Google Scholar 

  22. E. Rezlescu, L. Sachelarie, P.D. Popa, N. Rezlescu, IEEE Trans. Magn. 36, 3962–3967 (2000)

    Article  Google Scholar 

  23. R. Ali, M.A. Khan, A. Mahmood, A.H. Chughtai, A. Sultan, M. Shahid, M. Ishaq, M.F. Warsi, Ceram. Int. 40, 3841–3846 (2014)

    Article  Google Scholar 

  24. H. Hirazawa, S. Kusamoto, H. Aono, T. Naohara, K. Mori, Y. Hattori, T. Maehara, Y. Watanabe, J. Alloys Compd. 461, 467–473 (2008)

    Article  Google Scholar 

  25. H.M. Zaki, S.A. Heniti, J. Nanosci. Nanotech. 12, 7126–7131(2012)

    Article  Google Scholar 

  26. A.M. Escamilla-Pérez, D.A. Cortés-Hernández, J.M. Almanza-Robles, D. Mantovani, P. Chevallier, J. Magn. Magn. Mater. 374, 474–478 (2015)

    Article  Google Scholar 

  27. Md.D. Rahaman, Md. Dalim Mia, M.N.I. Khan, A.K.M. Akther Hossain, J. Magn. Magn. Mater. 404, 238–249 (2016)

    Article  Google Scholar 

  28. H.E. Scherrer, H. Kisker, H. Kronmuller, R. Wurschum, Nanostruct. Mater. 6, 533–538 (1995)

    Article  Google Scholar 

  29. B.D. Cullity, Elements of X-ray Diffraction (Addison Wesley Publ. Co. Inc., Reading, 1956), p. 42

    Google Scholar 

  30. M. Junaid, M.A. Khan, F. Iqbal, G. Murtaza, M.N. Akhtar, M. Ahmad, I. Shakir, M.F. Warsi, J. Magn. Magn. Mater. 419, 338–344 (2016)

    Article  Google Scholar 

  31. Z. Karimi, Y. Mohammadifar, H. Shokrollahi, Sh. Khameneh Asl, Gh. Yousefi, L. Karimi, J. Magn. Magn. Mater. 361, 150–156 (2014)

    Article  Google Scholar 

  32. M.A. Amer, M. El Hiti, J. Magn. Magn. Mater. 234, 118–125 (2001)

    Article  Google Scholar 

  33. K. Standley, Oxide Magnetic Materials (Clarendon, Oxford, 1974), p. 97

    Google Scholar 

  34. J.R. Macdonald, E. Barsoukov, Impedance Spectroscopy: Theory, Experiment and Applications, 2nd edn. (Wiley, Hoboken, 2005)

    Google Scholar 

  35. R.D. Waldron, Phys. Rev. 99, 1727–1735 (1955)

    Article  Google Scholar 

  36. B.J. Evans, S. Hafner, J. Phys. Chem. Solids 29, 1573–1588 (1968)

    Article  Google Scholar 

  37. M.G. Naseri, E.B. Saion, H.A. Ahangar, A.H. Shaari, M. Hashim, J. Nanomater. 2010, 907686 (2010)

    Google Scholar 

  38. T. Tsutaoka, J. Appl. Phys. 93, 2789–2798 (2003)

    Article  Google Scholar 

  39. R.L. Coble, T.K. Gupta, in Sintering and Related Phenomena, ed. by G.C. Kuczynski, C.F. Gibbon (Gordon & Breach, New York, 1967), p. 423

    Google Scholar 

  40. P.J. van der Zaag, P.J. van der Valk, M.Th. Rekveldt, Appl. Phys. Lett. 69, 2927–2929 (1996)

    Article  Google Scholar 

  41. J.C. Maxwell, Electricity and Magnetism, (Oxford University Press, London, 1873), p. 328

    Google Scholar 

  42. K.W. Wagner, Am. Phys. 40, 817–855 (1913)

    Google Scholar 

  43. C.G. Koops, Phys. Rev. 83, 121–124 (1953)

    Article  Google Scholar 

  44. S.N. Dolia, P.K. Sharma, M.S. Dhawan, S. Kumar, A.S. Prasad, A. Samariya, S.P. Pareek, R.K. Singhal, K. Asokan, Y.T. Xing, M. Alzamora, E. Saitovitach, Appl. Surf. Sci. 258, 4207–4211 (2012)

    Article  Google Scholar 

  45. M.R. Bhandare, H.V. Jamadar, A.T. Pathan, B.K. Chougule, A.M. Shaikh, J. Alloys Compd. 509, L113–L118 (2011)

    Article  Google Scholar 

  46. A.A. Birajdar, S.E. Shirsath, R.H. Kadam, S.M. Patange, D.R. Mane, A.R. Shitre, Ceram. Int. 38, 2963–2970 (2012)

    Article  Google Scholar 

  47. S. Bhagawat, P. Rao, J. Appl. Phys. 3, 1–6 (2013)

    Google Scholar 

  48. J. Rout, R. Choudhary, S. Shannigrahi, H. Sharma, J. Electron. Mater. 44, 3811–3818 (2015)

    Article  Google Scholar 

  49. S. Rasheed, H.S. Aziz, R.A. Khan, A.M. Khan, A. Rahim, J. Nisar, S.M. Shah, F. Iqbal, A.R. Khan, Ceram. Int. 42, 3666–3672 (2016)

    Article  Google Scholar 

  50. Q. Xia, H. Su, T. Zhang, J. Li, G. Shen, H. Zhang, X. Tang, J. Appl. Phys. 112, 043915 (2012)

    Article  Google Scholar 

  51. S. Mollah, K. Som, K. Bose, B.K. Chaudhuri, J. Appl. Phys. 74, 931–937 (1993)

    Article  Google Scholar 

  52. R. Andoulsi, K.H. Naifer, M. Ferid, Ceram. Int. 39, 6527–6531 (2013)

    Article  Google Scholar 

  53. A.A. Sattar, H.M. El-Sayed, W.R. Agami, J. Mater. Eng. Perform. 16, 573–577 (2007)

    Article  Google Scholar 

  54. S.T. Assar, H.F. Abosheiasha, J. Magn. Magn. Mater. 374, 264–272 (2015)

    Article  Google Scholar 

  55. K.M. Batoo, Physica B 406, 382–387 (2011)

    Article  Google Scholar 

  56. A. Kumar, B. Singh, R. Choudhary, A.K. Thakur, Mater. Chem. Phys. 99, 150–159 (2006)

    Article  Google Scholar 

  57. K.M. Batoo, J. Phys. Chem. Solids 72, 1400–1407 (2011)

    Article  Google Scholar 

  58. B. Tiwari, R. Choudhary, J. Alloys Compd. 493, 1–10 (2010)

    Article  Google Scholar 

  59. M.A. Rahman, A.K.M. Akther Hossain, Phys. Scr. 89, 8 (2014)

    Article  Google Scholar 

  60. K.M. Batoo, M.S. Ansari, Nanoscale Res. Lett. 7, 112–126 (2012)

    Article  Google Scholar 

  61. J.R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and System, 3rd edn. (Wiley, New York, 1987)

    Google Scholar 

  62. R.S. Devan, Y.D. Kolekar, B.K. Chougule, J. Phys. 18, 9809–9821 (2006)

    Google Scholar 

  63. A. Goldman, Modern Ferrite Technology, (Marcel Dekker Inc., New York, 1993)

    Google Scholar 

  64. A. Globus, P. Duplex, IEEE Trans. Magn. 2, 441–445 (1966)

    Article  Google Scholar 

  65. T.Y. Byun, S.C. Byeon, K.S. Hong, IEEE Trans. Magn. 35, 3445–3447 (1999)

    Article  Google Scholar 

  66. A. Globus, P. Duplex, M. Guyd, IEEE Trans. Magn. 7, 617–622 (1971)

    Article  Google Scholar 

  67. N. Bloembergen, Proc. IRE 44, 1259–1269 (1956)

    Article  Google Scholar 

  68. K. Praveena, K. Sadhana, R. Sandhya, S.R. Murthy, H.L. Liu, Ceram. Int. 42, 8869–8877 (2016)

    Article  Google Scholar 

  69. G.K. Joshi, A.Y. Khot, S.R. Sawant, Solid State Commun. 65, 1593–1595 (1988)

    Article  Google Scholar 

  70. A.K.M. Akther Hossain, T.S. Biswas, S.T. Mahmud, T. Yanagida, H. Tanaka, T. Kawai, J. Magn. Magn. Mater. 321, 81–87 (2009)

    Article  Google Scholar 

  71. A. Beitollani, M. Hoor, J. Mater. Sci. 14, 477–482 (2003)

    Google Scholar 

  72. A. Verma, T.C. Goel, R.G. Mendiratta, J. Magn. Magn. Mater. 210, 274–278 (2010)

    Article  Google Scholar 

  73. A.K. Singh, T.C. Goel, R.G. Mendiratta, O.P. Thakur, C. Prakash, J. Appl. Phys. 92, 3872–3876 (2002)

    Article  Google Scholar 

  74. A.K.M. Akther Hossain, M.L. Rahman, J. Magn. Magn. Mater. 323, 1954–1962 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Experimental Solid State Physics Laboratory of Bangladesh University of Engineering and Technology (BUET) for allowing us to carry out this research. The authors would also like to thank to the authorities of the Center for Advanced Research in Sciences (CARS), University of Dhaka for allowing us to use the Scanning Electron Microscope (JEOL-JSM-6490LA), X-ray diffractometer (RIGAKU Ultima IV, Japan) and Fourier Transform Infrared (Shimadzu FTIR 8400 S) spectroscopy facilities, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. D. Rahaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleque, R., Rahaman, M.D. & Akther Hossain, A.K.M. Influence of Ca2+ ions substitution on structural, microstructural, electrical and magnetic properties of Mg0.2−xCaxMn0.5Zn0.3Fe2O4 ferrites. J Mater Sci: Mater Electron 28, 13185–13200 (2017). https://doi.org/10.1007/s10854-017-7154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7154-5

Keywords

Navigation