Skip to main content
Log in

Impact of aliovalent ions doping on structural and electrical characteristics of YMnO3 ceramic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The extraordinary physical characteristics and enormous potential for technological applications of multiferroic materials have sparked recent interest in these materials. In this work, the composition of aliovalent ions Ba2+/Ti4+ doped YMnO3 i.e., Y0.95Ba0.05Mn0.95Ti0.05O3 ceramic sample was prepared through the solid-state method. The structural, dielectric, and ferroelectric properties of the prepared sample were studied in detail. X-ray diffraction patterns unveil the hexagonal crystal structure of the ceramic owning P63cm space group symmetry, which is also authenticated by accomplishing Rietveld’s refinement of the sample. Nevertheless, the ceramic demonstrated the emergence of the orthorhombic peak. The formation of phase composition of the prepared sample was proved through FT-IR spectroscopic measurement. The Raman spectroscopy analysis of the sample reveals the presence of subtle vibrational modes. The investigation of the dielectric and electrical properties of the prepared sample at frequencies between 1 kHz and 1 MHz and temperatures spanning from 303 to 623 K has yielded significant outcomes. These outcomes include dielectric dispersion, conduction mechanism, and relaxation process of the samples, which are highlighted in this study. The ferroelectric behaviour of the prepared sample has been studied using PE hysteresis loop measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. B.B. Van Aken, A. Meelsma, T.T.M. Palstra, Acta Crystallogr. Sect. C Cryst. Struct. Commun. 57, 230 (2001)

    Article  Google Scholar 

  2. B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, Nat. Mater. 3, 164–170 (2004)

  3. G. A. Smolenskii and V. A. Bokov, J. Appl. Phys. 35, 915–918 (1964)

  4. A. A. Nugroho, N. Bellido, U. Adem, G. Nénert, C. Simon, M. O. Tjia, M. Mostovoy, and T. T. M. Palstra, Phys. Rev. B Condens. Matter Mater. Phys. 75, 174435 (2007)

  5. O. Polat, M. Coskun, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, J. Alloys Compd. 752, 274 (2018)

    Article  Google Scholar 

  6. N.A. Spaldin, S.W. Cheong, R. Ramesh, Phys. Today 63, 38 (2010)

    Article  Google Scholar 

  7. M.M. Vopson, Crit. Rev. Solid State Mater. Sci. 40, 223 (2015)

    Article  ADS  Google Scholar 

  8. G. Dixit, P. Kumar, P. Negi, K. Asokan, Ferroelectrics 516, 74 (2017)

    Article  ADS  Google Scholar 

  9. D. Varshney, P. Sharma, A. Kumar, Mater (Express, Res, 2015)

    Google Scholar 

  10. K. Sangeeta, M. Maisnam, and S. Phanjoubam, Integr. Ferroelectr. 35, 915–918 (2018).

  11. F. Wan, X. Bai, K. Song, X. Lin, X. Han, J. Zheng, C. Cao, J. Magn. Magn. Mater. 424, 371 (2017)

    Article  ADS  Google Scholar 

  12. R.K. Thakur, R. Thakur, A.M. Awasthi, V. Ganesan, N.K. Gaur, AIP Conf. Proc. 1447, 1013 (2012)

    Article  ADS  Google Scholar 

  13. J. Shukla and A. Mishra, J. Supercond. Nov. Magn. 34, 451–459 (2020)

  14. P. Saxena and A. Mishra, J. Solid State Chem. 301, 122364 (2021)

  15. N. Sharma, A. Das, C.L. Prajapat, S.S. Meena, J. Magn. Magn. Mater. 348, 120 (2013)

    Article  ADS  Google Scholar 

  16. L.P. Chanu, S. Phanjoubam, J. Mater. Sci. Mater. Electron. 33, 6107 (2022)

    Article  Google Scholar 

  17. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751-767(1976).

  18. P.G.R. Achary, A.A. Nayak, R.K. Bhuyan, R.N.P. Choudhary, S.K. Parida, J. Mol. Struct. 1226, 129391 (2021)

    Article  Google Scholar 

  19. J. Shukla, A. Mishra, Mater. Today Proc. 46, 2189 (2021)

    Article  Google Scholar 

  20. M. Khan, A. Mishra, J. Shukla, P. Sharma, AIP Conf. Proc. 2100, 1 (2019)

    Google Scholar 

  21. J. Shukla, M.D. Varshney, A. Mishra, Mater. Today Proc. 47, 652 (2021)

    Article  Google Scholar 

  22. F. Wan, L. Li, X. Bai, Y. Wang, L. Gao, J. Li, and C. Cao, J. Mater. Sci. Mater. Electron. 33, 17361–17371 (2022).

  23. D. Karoblis, A. Zarkov, E. Garskaite, K. Mazeika, D. Baltrunas, G. Niaura, A. Beganskiene, A. Kareiva, Sci. Rep. 11, 1 (2021)

    Article  Google Scholar 

  24. P. Saxena, P. Choudhary, A. Yadav, V. N. Rai, M. Varshney, and A. Mishra, J. Mater. Sci. Mater. Electron. 30, 7292–7300 (2019)

  25. O. Polat, Z. Durmus, F.M. Coskun, M. Coskun, A. Turut, J. Mater. Sci. 53, 3544 (2018)

    Article  ADS  Google Scholar 

  26. C. G. Koops, Phys. Rev. 83, 121 (1951).

  27. M. Coşkun, A.O. Polat, F.M. Coşkun, Z. Durmuş, C.M. Caglar, A. Türüt, RSC Adv. 8, 4634 (2018)

    Article  ADS  Google Scholar 

  28. A. M. Zhang, W. H. Zhu, X. S. Wu, and B. Qing, J. Cryst. Growth (2011)

  29. P. Choudhary, P. Saxena, A. Yadav, A.K. Sinha, V.N. Rai, M.D. Varshney, A. Mishra, J. Supercond. Nov. Magn. 32, 2639 (2019)

    Article  Google Scholar 

  30. Q. Liu, J. Liu, D. Lu, T. Li, and W. Zheng, Materials (Basel). 12, (2019).

  31. S. H. Skjærvø, E. T. Wefring, S. K. Nesdal, N. H. Gaukås, G. H. Olsen, J. Glaum, T. Tybell, and S. M. Selbach, Nat. Commun. 7, 13745 (2016).

  32. P. Saxena, P. Choudhary, A. Yadav, V.N. Rai, A. Mishra, J. Mater. Sci. Mater. Electron. 31, 12444 (2020)

    Article  Google Scholar 

  33. M. Tomczyk, P. Maria Vilarinho, A. Moreira, and A. Almeida, J. Appl. Phys. 110, 064116 (1-6) (2011).

  34. M. Jebli, C. Rayssi, N. Abdelmoula, J. Dhahri, H. Belmabrouk, and H. Alrobei, J. Mater. Sci. Mater. Electron. 31, 22323–22339 (2020).

  35. A. Shukla, R.N.P. Choudhary, Curr. Appl. Phys. 11, 414 (2011)

    Article  ADS  Google Scholar 

  36. T. Ahmad and I. H. Lone, Bull. Mater. Sci. 41, 25 (2018).

  37. K. Funke, Prog. Solid State Chem. 22, 111–195 (1993).

  38. S. Aydi, W. Chérif, F. Khammassi, A.J.M. Sales, N.M. Ferreira, N. Zouari, Appl. Phys. A Mater. Sci. Process. 127, 1 (2021)

    Article  Google Scholar 

  39. D. K. Pradhan, P. Misra, V. S. Puli, S. Sahoo, D. K. Pradhan, and R. S. Katiyar, J. Appl. Phys. 115, 243904 (2014)

  40. J. K. Khan, M. Khalid, A. D. Chandio, K. Shahzadi, Z. Uddin, G. Mustafa, M. S. Akhtar, N. U. Channa, and Z. A. Gilani, J. Sol-Gel Sci. Technol. 101, 606–617 (2020).

  41. M.G. Smitha, M.V. Murugendrappa, J. Mater. Sci. Mater. Electron. 30, 10776 (2019)

    Article  Google Scholar 

  42. J. Shukla, S. Bisen, M. Khan, A. Mishra, Appl. Phys. A Mater. Sci. Process. 127, 1 (2021)

    Article  Google Scholar 

  43. M. Sánchez-Pérez, O. J. Dura, J. P. Andrés, R. López Antón, J. A. Gonzalez, and M. A. López De La Torre, J. Appl. Phys. 126, 224103 (1–11) (2019).

  44. O. Rosales-González, F. Sánchez-De Jesús, C.A. Cortés-Escobedo, A.M. Bolarín-Miró, Ceram. Int. 44, 15298 (2018)

    Article  Google Scholar 

  45. M.K. Shamim, S. Sharma, S. Sinha, E. Nasreen, J. Adv. Dielectr. 7, 1 (2017)

    Google Scholar 

  46. M. Krichen, M. Megdiche, M. Gargouri, K. Guidara, Indian J. Phys. 88, 1051 (2014)

    Article  ADS  Google Scholar 

  47. L. H. Omari, R. Moubah, A. Boutahar, L. Hajji, and R. El Ouatib, 44, 23–31 (2020)

  48. A. Shukla, R.N.P. Choudhary, A.K. Thakur, J. Phys. Chem. Solids 70, 1401 (2009)

    Article  ADS  Google Scholar 

  49. I. Ksentini, M. Ben Abdessalem, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020)

    Article  Google Scholar 

  50. B. Mandal, P. Mitra, Mater. Chem. Phys. 251, 123095 (2020)

    Article  Google Scholar 

  51. O. Zemljak, D.L. Golić, M. Počuča-Nešić, A. Dapčević, P. Šenjug, D. Pajić, T. Radošević, G. Branković, Z. Branković, J. Sol-Gel Sci. Technol. 103, 807 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to several individuals and organizations for their invaluable contributions. The authors would like to thank UGC-DAE-CSR Indore for providing measurement facilities, including Dr. M. Gupta and Mr. L. Behera for XRD measurement, Dr. V.G. Sathe and Mr. Rathore for Raman measurement, Dr. R. J. Choudhary and Mr. Bharadwaj for dielectric measurement, and Dr. V.R. Reddy for ferroelectric measurement. The authors are also deeply appreciative of Dr. Pratibha Sharma of the School of Chemical Sciences, Devi Ahilya University Indore, for providing the FT-IR measurement facility.

Author information

Authors and Affiliations

Authors

Contributions

JS: Investigation, Formal analysis, Writing-original draft. PS: Data curation, Writing-review and editing. PJ: Conceptualization, Writing-review and editing. PJ: Formal analysis. AM: Supervision, Resources, Writing-review and editing.

Corresponding author

Correspondence to Jyoti Shukla.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, J., Saxena, P., Joshi, P. et al. Impact of aliovalent ions doping on structural and electrical characteristics of YMnO3 ceramic. Appl. Phys. A 129, 731 (2023). https://doi.org/10.1007/s00339-023-07009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07009-x

Keywords

Navigation