Skip to main content
Log in

Effect of Ar pressure on the wettability of copper droplet on graphite substrate by molecular dynamics simulation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Understanding the wetting behavior of copper droplet on graphite substrate has important engineering significance for guiding the preparation of Cu/graphite (Cu–C) composite materials. This paper used the molecular dynamics simulation method to analyze the wetting behavior of Cu droplet on the graphite substrate with different Ar pressures at the atomic scale, which ranged from 0 to 3 atm. The molecular dynamics simulation results indicated that for temperatures below 1300 K, Ar pressure hindered the wetting of droplet, while for temperatures above 1300 K, Ar pressure promoted the wetting process of droplet on the graphite substrate. However, in systems with Ar pressure higher than 1.2 atm, the improvement of wetting by Ar pressure no longer increases. In addition, Ar pressures increased the potential of mean force of Cu droplets leaving the graphite substrates, making it more difficult for droplets to detach from the substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material, Code availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. Y. Shabany, Heat Transfer: Thermal Management of Electronics (CRC Press, Boca Raton, 2009)

    Book  Google Scholar 

  2. J. Lee, S.M. Thompson, T.E.L. Lacy Jr., Thermal spreading analysis of a transversely isotropic heat spreader. Int. J. Therm. Sci. 118, 461–474 (2017)

    Article  Google Scholar 

  3. X.H. Qu, L. Zhang, W.U. Mao, S.B. Ren, Review of metal matrix composites with high thermal conductivity for thermal management applications. Prog. Nat. Sci. 21, 189–197 (2011)

    Article  Google Scholar 

  4. H. Bai, C. Xue, J.L. Lyu, J. Li, G.X. Chen, J.H. Yu et al., Thermal conductivity and mechanical properties of flake graphite/copper composite with a boron carbide-boron nano-layer on graphite surface. Composites A 106, 42–51 (2018)

    Article  Google Scholar 

  5. S. Dorfman, D. Fuks, M. Suery, Diffusivity of carbon in copper- and silver-based composites. J. Mater. Sci. 34, 77–81 (1999)

    Article  ADS  Google Scholar 

  6. Y. Huang, Y.S. Su, X.W. Guo et al., Fabrication and thermal conductivity of copper coated graphite film/aluminum composites for effective thermal management. J. Alloys Compd. 711, 22–30 (2017)

    Article  Google Scholar 

  7. X. Jiang, H.C. Fang, P. Xiao et al., Influence of carbon coating with phenolic resin in natural graphite on the microstructures and properties of graphite/copper composites. J. Alloys Compd. 744, 165–173 (2018)

    Article  Google Scholar 

  8. Q. Liu et al., Modeling of interfacial design and thermal conductivity in graphite flake/Cu composites for thermal management applications. Appl. Therm. Eng. 156, 351–358 (2019)

    Article  ADS  Google Scholar 

  9. R. Zhang et al., Influence of Ti content on the microstructure and properties of graphite flake/Cu-Ti composites fabricated by vacuum hot pressing. Vacuum 141, 265–271 (2017)

    Article  ADS  Google Scholar 

  10. Y. Sun, Y. Liu, Q. Wang, Diamond Tools and Metallography (China Architecture & Building Press, Beijing, 1999), pp.123–139

    Google Scholar 

  11. R.C. Hula, C. Edtmaier, M. Holzweber, The wetting behaviour of silver on carbon, pure and carburized nickel, cobalt and molybdenum substrates. Appl. Surf. Sci. 256, 4697–4701 (2010)

    Article  ADS  Google Scholar 

  12. S. Bao, K. Tang, A. Kvithyld et al., Wetting of pure aluminium on the graphite, SiC and Al2O3 in aluminium filtration. Trans Nonferr Met Soc China 22, 1930–1938 (2012)

    Article  Google Scholar 

  13. J. Lee, T. Tanaka, N. Seo et al., Wetting of Au and Ag particles on monocrystalline graphite substrates. Rare Met. 25, 469–472 (2006)

    Article  Google Scholar 

  14. M. Barlak, J. Piekoszewski, J. Stanislawski et al., The effect of titanium ion implantation into carbon ceramic on its wettability by liquid copper. Vaccum 81, 1271–1274 (2007)

    Article  ADS  Google Scholar 

  15. D.A. Mortimer, M. Nicholas, The wetting of carbon by copper and copper alloys. J. Mater. Sci. 5(2), 149–155 (1970)

    Article  ADS  Google Scholar 

  16. J. Song, Q. Guo, Z. Tao et al., Mo2C intermediate layers for graphite–Cu system using the molten salt method. Fusion Eng. Des. 86(12), 2965–2970 (2011)

    Article  Google Scholar 

  17. C. Jiang, Z. Xiong, K. Li et al., Molecular dynamics simulation study on the wetting behavior of liquid iron and graphite. J. Mol. Liq. 311, 113350 (2020)

    Article  Google Scholar 

  18. C. Guan, X. Lv, Z. Han, C. Chen, The wetting characteristics of aluminum droplets on rough surfaces with molecular dynamics simulations. Phys. Chem. Chem. Phys. 22(4), 2361–2371 (2020)

    Article  Google Scholar 

  19. E.B. Webb III., G.S. Grest, Molecular dynamics simulations of reactive wetting. Scr. Mater. 47(6), 393–398 (2002)

    Article  Google Scholar 

  20. X. Lv, C. Guan, Z. Han, H. Zhang, Q. Liu, The wetting characteristics of copper droplets on tungsten surfaces on atomic scale: a molecular dynamics simulation. Comput. Mater. Sci. 174, 109487 (2020)

    Article  Google Scholar 

  21. Z. Wang, L. Li, M. Yang, Molecular dynamics simulation of the wetting characteristics of a nanofluid droplet on rough substrate. J. Mol. Liq. 319, 114204 (2020)

    Article  Google Scholar 

  22. J. Rafiee, X. Mi, H. Gullapalli et al., Wetting transparency of graphene. Nat. Mater. 11(3), 217–222 (2012)

    Article  ADS  Google Scholar 

  23. S. Khan, J.K. Singh, Wetting transition of nanodroplets of water on textured surfaces: a molecular dynamics study. Mol. Simul. 40(6), 458–468 (2014)

    Article  Google Scholar 

  24. M.S. Ambrosia, M.Y. Ha, S. Balachandar, Dynamic hydrophobicity on flat and pillared graphite surfaces with different pillar surface fractions. J. Mech. Sci. Technol. 28(2), 669 (2014)

    Article  Google Scholar 

  25. N. Kashaninejad, W.K. Chan, N.-T. Nguyen, Eccentricity effect of micropatterned surface on contact angle. Langmuir 28(10), 4793–4799 (2012)

    Article  Google Scholar 

  26. H. Yaghoubi, M. Foroutan, Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation. Phys. Chem. Chem. Phys. 20(34), 22308–22319 (2018)

    Article  Google Scholar 

  27. N.K. Adam, Use of the term ‘Young’s equation’ for contact angles. Nature 180(4590), 809–810 (1957)

    Article  ADS  Google Scholar 

  28. Z. Weltsch, A. Lovas, J. Takács et al., Measurement and modeling of the wettability of graphite by silver–tin (Ag–Sn) liquid alloy. Appl. Surf. Sci. 268, 52–60 (2013)

    Article  ADS  Google Scholar 

  29. S.A. Sánchez, J. Narciso, E. Louis et al., Wetting and capillarity in the Sn/graphite system. Mater. Sci. Eng. A 495, 187–191 (2008)

    Article  Google Scholar 

  30. J.G. Li, Influence of oxygen partial pressure on the wetting of titanium carbide by molten copper and other metals. Mater. Lett. 17, 74–81 (1993)

    Article  Google Scholar 

  31. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  ADS  MATH  Google Scholar 

  32. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81(1), 511–519 (1984)

    Article  ADS  Google Scholar 

  33. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A: At. Mol. Opt. Phys. 31(3), 1695 (1985)

    Article  ADS  Google Scholar 

  34. M.I. Mendelev, M.J. Kramer, C.A. Becker, M. Asta, Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philos. Mag. 88(12), 1723–1750 (2008)

    Article  ADS  Google Scholar 

  35. H. Huang et al., Radiation damage resistance and interface stability of copper–graphene nanolayered composite. J. Nucl. Mater. 460, 16–22 (2015)

    Article  ADS  Google Scholar 

  36. E. Wilhelm, R. Battino, Estimation of Lennard–Jones (6,12) pair potential parameters from gas solubility data. J. Chem. Phys. 55, 4012 (1971). https://doi.org/10.1063/1.1676694

    Article  ADS  Google Scholar 

  37. C. Huang, Xu. Fei, Yu. Sun, Effects of morphology, tension and vibration on wettability of graphene: a molecular dynamics study. Comput. Mater. Sci. 139, 216–224 (2017)

    Article  Google Scholar 

  38. M.D. Ruijter, T.D. Blake, J.D. Coninck, Dynamic wetting studied by molecular modeling simulations of droplet spreading. Langmuir 15(22), 7836 (1999)

    Article  Google Scholar 

  39. N. Vu-Bac, T. Lahmer, Y. Zhang, X. Zhuang, T. Rabczuk, Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Compos. B Eng. 59, 80–95 (2014)

    Article  Google Scholar 

  40. S. Park, K. Schulten, Calculating potentials of mean force from steered molecular dynamics simulations. J. Chem. Phys. 120(13), 5946–5961 (2004). https://doi.org/10.1063/1.1651473

    Article  ADS  Google Scholar 

  41. J.W. Gooch, Gay-Lussac’s Law (Springer, New York, 2011)

    Book  Google Scholar 

  42. S. Valkealahti, M. Manninen, Melting of copper clusters. Comput. Mater. Sci. 1, 123–134 (1993). https://doi.org/10.1016/0927-0256(93)90003-6

    Article  Google Scholar 

Download references

Funding

This research was financially supported by “National Natural Science Foundation of China (Grant no. 51274040)”.

Author information

Authors and Affiliations

Authors

Contributions

JN designed analysis methods, completed calculations and thesis writing. XH participated in guiding the article ideas. XQ participated in the technical support of analysis and calculation. JW and ZZ participated in the discussion of the calculation contents and potential functions. The first draft of the manuscript was written by JN and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jingyang Nan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, J., He, X., Qu, X. et al. Effect of Ar pressure on the wettability of copper droplet on graphite substrate by molecular dynamics simulation. Appl. Phys. A 129, 732 (2023). https://doi.org/10.1007/s00339-023-07008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07008-y

Keywords

Navigation