Skip to main content
Log in

Dielectric and electrical characterization of hematite (α-Fe2O3) nanomaterials synthesized by thermal decomposition of iron(III)citrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hematite nanomaterials were obtained on thermal decomposition of (i) iron (III) citrate, (ii) 3:1 mixture of iron (III) citrate and malonic acid, and (iii) 3:1 mixture of iron (III) citrate and glucose. The average particle size (22–55 nm) of the nanomaterials was significantly affected by the co-precursor. Frequency and temperature dependence of the dielectric constant, dielectric loss and ac conductivity of these hematite nanomaterials were studied. High values of the real part of dielectric constant (\({\varepsilon }^{\prime}\)) were observed in the low-frequency region which eventually reached a frequency independent constant value above 10 kHz. A decrease in the value of \({\varepsilon }^{\prime}\) with increase in temperature and an increase in the \({\varepsilon }^{\prime}\) value with increase in the particle size were noticed. For the entire set of nanomaterials, the dielectric loss was found to have a decreasing tendency with increase in frequency with small humps at higher frequencies owing to the existence of relaxing dipoles. These nanomaterials were found to be non-Debye type and poly-dispersive. For all hematite nanomaterials, the ac conductivity followed Jonscher’s power law, and the particle-size-dependent conduction mechanisms (correlated-barrier-hopping for D = 22.5 nm and non-overlapping small polaron tunneling for D > 22.5 nm) in these nanomaterials were established. The dc conductivity values were measured as a function of temperature to confirm the semiconducting nature of these nanomaterials. The activation energy values derived from the dc conductivity studies decreased with increasing size of the nanoparticles. Analysis of the electric modulus study showed that the relaxation peaks shifted towards lower frequency with increasing temperature and found that the electrical conduction and dielectric polarization follow the same mechanism in these nanomaterials. The thermally synthesized hematite nanomaterials exhibited particle-size-dependent high dielectric constant and lower dielectric loss which highlight the synthetic method adopted as well as the synthesized materials’ suitability for applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. U. Schwertmann, R.M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization (John Wiley & Sons, 2008)

    Google Scholar 

  2. W. Wu, Z. Wu, T. Yu, C. Jiang, W.-S.S. Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16(2), 23501 (2015). https://doi.org/10.1088/1468-6996/16/2/023501

    Article  Google Scholar 

  3. H. Wan et al., Advanced hematite nanomaterials for newly emerging applications. Chem. Sci. 14(11), 2776–2798 (2023)

    Article  Google Scholar 

  4. K.G. Gareev, Diversity of iron oxides: mechanisms of formation, physical properties and applications. Magnetochemistry 9(5), 119 (2023)

    Article  Google Scholar 

  5. S. Kumar, M. Kumar, A. Singh, Synthesis and characterization of iron oxide nanoparticles (Fe2O3, Fe3O4): a brief review. Contemp. Phys. 62(3), 144–164 (2021). https://doi.org/10.1080/00107514.2022.2080910

    Article  ADS  Google Scholar 

  6. M. Chakraborty, S. Kundu, B. Das, A. Bhattacharjee, Thermal transformation of 1-(ferrocenyl) ethanol to iron oxide nanoparticles based on reaction atmosphere: analysis of the decomposition reaction using non-isothermal thermogravimetry. J. Therm. Anal. Calorim. (2023). https://doi.org/10.1007/s10973-023-12306-x

    Article  Google Scholar 

  7. S. Kundu et al., Study on co-precursor driven solid state thermal conversion of iron(III)citrate to iron oxide nanomaterials. Appl. Phys. A 129(4), 264 (2023). https://doi.org/10.1007/s00339-023-06559-4

    Article  ADS  Google Scholar 

  8. P.S. Bassi, B.S. Randhawa, H.S. Jamwal, Mössbauer study of the thermal decomposition of iron(III) citrate pentahydrate. J. Therm. Anal. 29(3), 439–444 (1984). https://doi.org/10.1007/BF01913454

    Article  Google Scholar 

  9. A. Srivastava, P. Singh, V.G. Gunjikar, A.P.B. Sinha, Study of the thermal decomposition of iron and. Thermochim. Acta 86(3591), 77–84 (1985)

    Article  Google Scholar 

  10. A. Dey, M. Zubko, J. Kusz, V.R.R. Reddy, A. Banerjee, A. Bhattacharjee, Solventless synthesis and characterization of α-Fe, γ-Fe, magnetite and hematite using iron(III)citrate. Solid State Sci. 95, 105932 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.105932

    Article  Google Scholar 

  11. S.B. Narang, S. Bahel, Low loss dielectric ceramics for microwave applications: a review. J. Ceram. Process. Res. 11(3), 316–321 (2010)

    Google Scholar 

  12. M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60(7), 392–412 (2015)

    Article  Google Scholar 

  13. J.C. Papaioannou, G.S. Patermarakis, H.S. Karayianni, Electron hopping mechanism in hematite (α-Fe2O3). J. Phys. Chem. Solids 66(5), 839–844 (2005). https://doi.org/10.1016/j.jpcs.2004.11.002

    Article  ADS  Google Scholar 

  14. J. Lian, X. Duan, J. Ma, P. Peng, T. Kim, W. Zheng, Hematite (α-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties. ACS Nano 3(11), 3749–3761 (2009)

    Article  Google Scholar 

  15. M. Mumtaz, M. Rajpoot, M. Ali, S. Hussain, M. Khan, Influence of graphene oxide on AC-conduction of hematite nanoparticles. Mater. Innov. 02, 26–35 (2022). https://doi.org/10.54738/MI.2022.2103

    Article  Google Scholar 

  16. M. Qayoom, K.A. Shah, A.H. Pandit, A. Firdous, G.N. Dar, Dielectric and electrical studies on iron oxide (α-Fe2O3) nanoparticles synthesized by modified solution combustion reaction for microwave applications. J. Electroceram. 45(1), 7–14 (2020)

    Article  Google Scholar 

  17. R. Bhat, M. Qayoom, G.N. Dar, B. Want, Improved dielectric, conductivity and magnetic properties of erbium doped α-Fe2O3 nanoparticles. J. Mater. Sci.: Mater. Electron. 30(24), 20914–20934 (2019)

    Google Scholar 

  18. K. Bindu, K.M. Ajith, H.S. Nagaraja, Electrical, dielectric and magnetic properties of Sn-doped hematite (α-SnxFe2–xO3) nanoplates synthesized by microwave-assisted method. J. Alloy. Compd. 735, 847–854 (2018)

    Article  Google Scholar 

  19. K. Bindu, H.S. Nagaraja, Temperature-dependant phase transformation of NixFeyxOz nanoferrites: their dielectric and magnetic properties. Appl. Phys. A 125, 1–14 (2019)

    Article  Google Scholar 

  20. K.W. Wagner, Zur theorie der unvollkommenen dielektrika. Ann. Phys. 345(5), 817–855 (1913)

    Article  MATH  Google Scholar 

  21. J.C. Maxwell, Electric and Magnetism, vol. 2 (Oxford University Press, New York, 1973)

    Google Scholar 

  22. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)

    Article  ADS  Google Scholar 

  23. S. Roy et al., Crystallinity mediated variation in optical and electrical properties of hydrothermally synthesized boehmite (γ-AlOOH) nanoparticles. J. Alloy. Compd. 763, 749–758 (2018)

    Article  Google Scholar 

  24. S. Ghosh et al., Effect of size fractionation on purity, thermal stability and electrical properties of natural hematite. J. Electron. Mater. 50, 3836–3845 (2021)

    Article  ADS  Google Scholar 

  25. S. Bardhan et al., Microstructure and dielectric properties of naturally formed microcline and kyanite: a size-dependent study. Cryst. Growth Des. 19(8), 4588–4601 (2019)

    Article  Google Scholar 

  26. A.J. Bosman, E.E. Havinga, Temperature dependence of dielectric constants of cubic ionic compounds. Phys. Rev. 129(4), 1593 (1963)

    Article  ADS  Google Scholar 

  27. S. Ganguly, K. Halder, N. Haque, S. Das, S. Dastidar, A comparative study between electrical properties of bulk and synthesized nano material of zinc sulphide. Am. J. Res. Commun. 3(3), 1–13 (2015)

    Google Scholar 

  28. P. Thakur, A. Kool, B. Bagchi, N.A. Hoque, S. Das, P. Nandy, RSC Advances Improvement of electroactive b phase nucleation loaded poly (vinylidene fluoride) thin films. RSC Adv. 5, 62819–62827 (2015)

    Article  ADS  Google Scholar 

  29. A.Y. Yassin, Dielectric spectroscopy characterization of relaxation in composite based on (PVA–PVP) blend for nickel–cadmium batteries. J. Mater. Sci.: Mater. Electron. 31(21), 19447–19463 (2020)

    Google Scholar 

  30. R.L.S. e Silva, P. Banerjee, A.F. Júnior, Functional properties of donor-and acceptor-co-doped high dielectric constant zinc oxide ceramics. Phys. Chem. Chem. Phys. 21(18), 9456–9464 (2019)

    Article  Google Scholar 

  31. M. Iacob et al., Iron oxide nanoparticles as dielectric and piezoelectric enhancers for silicone elastomers. Smart Mater. Struct. 26(10), 105046 (2017)

    Article  ADS  Google Scholar 

  32. Q. Chi et al., Enhanced thermal conductivity and dielectric properties of iron oxide/polyethylene nanocomposites induced by a magnetic field. Sci. Rep. 7(1), 1–11 (2017)

    Article  Google Scholar 

  33. M. Tahir, M. Fakhar-e-Alam, M. Atif, G. Mustafa, Z. Ali, Investigation of optical, electrical and magnetic properties of hematite α-Fe2O3 nanoparticles via sol-gel and co-precipitation method. J. King Saud Univ.-Sci. 35(5), 102695 (2023)

    Article  Google Scholar 

  34. N.B. Gatchakayala, R.S.R. Dachuru, Synthesis, magnetic, AC conductivity and dielectric properties of hematite nanocrystallites. Phys. Chem. Solid State 24(2), 244–248 (2023)

    Article  Google Scholar 

  35. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9(4), 341–351 (1941). https://doi.org/10.1063/1.1750906

    Article  ADS  Google Scholar 

  36. M. Goyal, A model to determine variation in dielectric constant with size and composition in semiconducting nanosolids. J. Comput. Electron. 21(6), 1212–1219 (2022)

    Article  Google Scholar 

  37. S. Anand, V.M. Vinosel, M.A. Jenifer, S. Pauline, Dielectric properties, ac electrical conductivity and electric modulus profiles of hematite (α-Fe2O3) nanoparticles. Int. Res. J. Eng. Technol. 4, 358 (2017)

    Google Scholar 

  38. M.N. Siddique, T. Ali, A. Ahmed, P. Tripathi, Enhanced electrical and thermal properties of pure and Ni substituted ZnO Nanoparticles. Nano-Struct. Nano-Objects 16(June), 156–166 (2018). https://doi.org/10.1016/j.nanoso.2018.06.001

    Article  Google Scholar 

  39. B. Sahoo, S.K. Sahu, S. Nayak, D. Dhara, P. Pramanik, Fabrication of magnetic mesoporous manganese ferrite nanocomposites as efficient catalyst for degradation of dye pollutants. Catal. Sci. Technol. 2(7), 1367–1374 (2012). https://doi.org/10.1039/C2CY20026K

    Article  Google Scholar 

  40. S.A. Saafan, S.T. Assar, Dielectric behavior of nano-structured and bulk Li Ni Zn ferrite samples. J. Magn. Magn. Mater. 324(19), 2989–3001 (2012). https://doi.org/10.1016/j.jmmm.2012.04.037

    Article  ADS  Google Scholar 

  41. A. Dhahri, E. Dhahri, E.K. Hlil, Electrical conductivity and dielectric behaviour of nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. RSC Adv. 8(17), 9103–9111 (2018)

    Article  ADS  Google Scholar 

  42. A.K. Jonscher, Universal Relaxation Law: A Sequel to Dielectric Relaxation in Solids (Chelsea Dielectrics Press, 1996)

    Google Scholar 

  43. H. Chouaibi, J. Khelifi, A. Benali, E. Dhahri, M.A. Valente, A. Koumina, Improved conductivity and reduced dielectric loss of Cu- substituted NiFe2O4 for high frequency applications. J. Alloys Compd. 839, 155601 (2020). https://doi.org/10.1016/j.jallcom.2020.155601

    Article  Google Scholar 

  44. M. Ben Bechir, K. Karoui, M. Tabellout, G. Kamel, A. Rhaiem, Electric and dielectric studies of the [N(CH3)3H]2CuCl4 compound at low temperature. J. Alloys Compd. 588, 551–557 (2014). https://doi.org/10.1016/j.jallcom.2013.11.141

    Article  Google Scholar 

  45. K. Kahouli, A.B.J. Kharrat, K. Khirouni, S. Chaabouni, Electrical conduction mechanism and dielectric properties of the [C13H16N2]5(BiCl6)3Cl hybrid compound. Appl. Phys. A 129(6), 431 (2023)

    Article  ADS  Google Scholar 

  46. V. Sharma et al., Phase transformation in Fe2O3 nanoparticles: electrical properties with local electronic structure. Physica B 620, 413275 (2021)

    Article  Google Scholar 

  47. F. Ahmad, A. Maqsood, Structural, electric modulus and complex impedance analysis of ZnO at low temperatures. Mater. Sci. Eng., B 273, 115431 (2021)

    Article  Google Scholar 

  48. S.F. Chérif, A. Chérif, W. Dridi, M.F. Zid, Ac conductivity, electric modulus analysis, dielectric behavior and bond valence sum analysis of Na3Nb4As3O19 compound. Arab. J. Chem. 13(6), 5627–5638 (2020)

    Article  Google Scholar 

  49. H.M.T. Farid, I. Ahmad, I. Ali, S.M. Ramay, A. Mahmood, G. Murtaza, Dielectric and impedance study of praseodymium substituted Mg-based spinel ferrites. J. Magn. Magn. Mater. 434, 143–150 (2017)

    Article  ADS  Google Scholar 

  50. S. Chahal, A. Kumar, P. Kumar, Zn doped α-Fe2O3: an efficient material for UV driven photocatalysis and electrical conductivity. Crystals 10(4), 273 (2020)

    Article  Google Scholar 

  51. M. Bourguiba, Z. Raddaoui, A. Dhahri, M. Chafra, J. Dhahri, M.A. Garcia, Investigation of the conduction mechanism, high dielectric constant, and non-Debye-type relaxor in La 0.67 Ba0.25 Ca0.08MnO3 manganite. J. Mater. Sci.: Mater. Electron. 31, 11810–11818 (2020)

    Google Scholar 

  52. H. Mansour et al., Structural, optical, magnetic and electrical properties of hematite (α-Fe2O3) nanoparticles synthesized by two methods: polyol and precipitation. Appl. Phys. A 123(12), 787 (2017). https://doi.org/10.1007/s00339-017-1408-1

    Article  ADS  Google Scholar 

  53. F. Le Formal, N. Tetreault, M. Cornuz, T. Moehl, M. Grätzel, K. Sivula, Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2(4), 737–743 (2011)

    Article  Google Scholar 

  54. H.A. Kramers, L’interaction entre les atomes magnétogènes dans un cristal paramagnétique. Physica 1(1–6), 182–192 (1934)

    Article  ADS  MATH  Google Scholar 

  55. K.M. Rosso, D.M.A. Smith, M. Dupuis, An ab initio model of electron transport in hematite (α-Fe2O3) basal planes. J. Chem. Phys. 118(14), 6455–6466 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

SK is thankful to DST-INSPIRE, Government of India for providing a fellowship. The authors express thank to Mr. G. Ghorai and Dr. P. K. Sahoo of NISER-Bhubaneswar, Jatni, India for providing powder XRD data.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, major data collection, and analysis were performed by SK. TS was involved in some data collections. AB conceptualized the problem and designed the study. The first draft of the manuscript was written by SK and finalized by AB. All authors reviewed the final manuscript.

Corresponding author

Correspondence to Ashis Bhattacharjee.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 163 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Sarkar, T. & Bhattacharjee, A. Dielectric and electrical characterization of hematite (α-Fe2O3) nanomaterials synthesized by thermal decomposition of iron(III)citrate. Appl. Phys. A 129, 723 (2023). https://doi.org/10.1007/s00339-023-07000-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07000-6

Keywords

Navigation