Skip to main content
Log in

Grain boundary modification in La0.67Ca0.33MnO3 manganites with additives: impact on magneto-transport properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

La0.67Ca0.33MnO3 manganite sample was synthesized using a sol–gel technique, and it was subsequently mixed with 1% of the additives Li2CO3, Bi2O3 and ZrO2, respectively. X-ray diffraction studies confirmed all the four samples were formed in single phase having an orthorhombic perovskite structure with the space group pnma. The estimated average grain size varies between 0.944 μm and 1.245 μm, and well-defined grains were observed in the additive samples with significant grain morphology in Li2CO3 additive, using morphological analysis. The magnetic and electrical behaviors of prepared samples were investigated in the temperature range (5–325 K) under constant applied magnetic field. The ferromagnetic to paramagnetic transition temperature (TC) was found to be more than 300 K and exhibiting 50% of ferromagnetic fraction at room temperature. The metal–insulator transition temperature (TP) is found to be in the neighborhood of the TC. The study expounds the role of 1% addition of additives: Li2CO3 acts as conduction barrier at the grain boundaries and hence an increase in the magnitude of resistivity, whereas Bi2O3, ZrO2 act as conduction channel at grain boundaries as a result the decrease in resistivity when compared with the pure sample. The ZrO2 additive sample exhibiting highest MR% includes extrinsic and intrinsic nature, whereas the Li2CO3 additive sample exhibiting extrinsic nature only. The conduction mechanism was explained in ferromagnetic metallic phase and paramagnetic insulator phase using electron–magnon scattering model and small polaron hopping model, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Y. Tokura, Colossal Magnetoresistive Oxides, Gordon and Breach Science (Publ, Amsterdam, 2000)

    Book  Google Scholar 

  2. C.N.R. Rao, A. Arulraj, A.K. Cheetham, B. Raveau, Charge ordering in the rare earth manganates: the experimental situation. J. Phys. Condens. Matter. 12, R83 (2000)

    Article  ADS  Google Scholar 

  3. C. Martin, A. Maignan, M. Hervieu, B. Raveau, Magnetic phase diagrams of L 1–x A x MnO 3 manganites (L= P r, S m; A= C a, S r). Phys. Rev. B. 60, 12191 (1999)

    Article  ADS  Google Scholar 

  4. J.W. Lynn, R.W. Erwin, J.A. Borchers, Q. Huang, A. Santoro, J.L. Peng, Z.Y. Li, Unconventional ferromagnetic transition in La 1–x Ca x MnO 3. Phys. Rev. Lett. 76, 4046 (1996)

    Article  ADS  Google Scholar 

  5. T. Ogawa, A. Sandhu, M. Chiba, H. Takeuchi, Y. Koizumi, Electrical and magnetic properties of La1− xBixMnO3. J. Magn. Magn. Mater. 290, 933–936 (2005)

    Article  ADS  Google Scholar 

  6. A.M. Ahmed, A. Kattwinkel, N. Hamad, K. Bärner, J.R. Sun, G.H. Rao, H. Schicketanz, P. Terzieff, I.V. Medvedeva, Evidence for magnetic clustering around Ge-sites in fixed valence doped manganites La0.7Ca0.3Mn1−yGeyO3. J. Magn. Magn. Mater. 242, 719–721 (2002)

    Article  ADS  Google Scholar 

  7. E. Rezlescu, C. Doroftei, P.D. Popa, N. Rezlescu, The transport and magnetic properties of La–Pb–Mg–Mn–O manganites at low temperatures. J. Magn. Magn. Mater. 320, 796–802 (2008)

    Article  ADS  Google Scholar 

  8. Y.K. Lakshmi, K.V. Kumar, V. Ganesan, P.V. Reddy, Effect of bismuth doping on the structural, magnetic, electrical, and thermopower behavior of lanthanum silver manganites. J. Mater. Sci. Mater. Electron. 31, 15931–15942 (2020)

    Article  Google Scholar 

  9. C.W. Searle, S.T. Wang, Studies of the ionic ferromagnet (LaPb) MnO3 III. Ferromagnetic resonance studies. Can. J. Phys. 47, 2703–2708 (1969)

    Article  ADS  Google Scholar 

  10. A.M. Ahmed, H.F. Mohamed, A.K. Diab, A.E.-M.A. Mohamed, A.E.A. Mazen, A.M. Mohamed, Enhanced electro-magnetic properties in La0.7Sr0.3MnO.3/ZrO2 composites. Indian J. Phys. 89, 561–570 (2015)

    Article  ADS  Google Scholar 

  11. M. Zhou, Y. Li, I. Jeon, Q. Yi, X. Zhu, X. Tang, H. Wang, L. Fei, Y. Sun, S. Deng, Enhancement of low-field magnetoresistance in self-assembled epitaxial La0.67Ca0.33MnO3: NiO and La0.67Ca0.33MnO3: Co3O4 composite films via polymer-assisted deposition. Sci. Rep. 6, 1–9 (2016)

    Google Scholar 

  12. M.S. Anwar, F. Ahmed, R. Danish, B.H. Koo, Impact of Co3O4 phase on the magnetocaloric effect and magnetoresistance in La0.7Sr0.3MnO3/Co3O4 and La0.7Ca0.3MnO3/Co3O4 ceramic composites. Ceram. Int. 41, 631–637 (2015)

    Article  Google Scholar 

  13. W. Xia, Z. Pei, K. Leng, X. Zhu, Research progress in rare earth-doped perovskite manganite oxide nanostructures. Nanoscale Res. Lett. 15, 1–55 (2020)

    Article  ADS  Google Scholar 

  14. Q. Chen, Y. Yang, Y. Gao, R. Xu, H. Zhang, J. Ma, Silver addition in polycrystalline La0.7Ca0.3MnO3: Large magnetoresistance and anisotropic magnetoresistance for manganite sensors. J. Alloys Compd. 882, 160719 (2021)

    Article  Google Scholar 

  15. Z. Wei, N.A. Liedienov, Q. Li, A.V. Pashchenko, W. Xu, V.A. Turchenko, M. Yuan, I.V. Fesych, G.G. Levchenko, Influence of post-annealing, defect chemistry and high pressure on the magnetocaloric effect of non-stoichiometric La0.8-xK0.2Mn1+ xO3 compounds. Ceram. Int. 47, 24553–24563 (2021)

    Article  Google Scholar 

  16. S.N. Barilo, G.L. Bychkov, V.I. Gatalskaya, L.A. Kurochkin, V.P. Sokol, H. Szymczak, R. Szymczak, M. Baran, Magnetic properties lithium-doped manganite single crystals. Low Temp. Phys. 27, 288–292 (2001)

    Article  ADS  Google Scholar 

  17. C. Henchiri, R. Hamdi, T. Mnasri, M.A. Valente, P.R. Prezas, E. Dhahri, Structural and magnetic properties of La1-x-xMnO3 (x= 0.1; 0.2 and 0.3) manganites. Appl. Phys. A. 125, 1–19 (2019)

    Article  Google Scholar 

  18. A. Yadav, J. Shah, R. Gupta, A. Shukla, S. Singh, R.K. Kotnala, Role of spin-glass phase for magnetoresistance enhancement in nickel substituted lanthanum calcium manganite. Ceram. Int. 42, 12630–12638 (2016)

    Article  Google Scholar 

  19. S.P. Altintas, A. Amira, A. Varilci, C. Terzioglu, Influence of Gd-doping in La0.7Ca0.3MnO3 on its structural and magneto-electrical properties. J. Magn. Magn. Mater. 324, 1331–1336 (2012)

    Article  ADS  Google Scholar 

  20. J.S. Park, C.O. Kim, Y.P. Lee, Y.S. Lee, H.J. Shin, H. Han, B.W. Lee, Influence of grain size on the electronic and the magnetic properties of La0.7 Ca0.3 Mn O3− δ. J. Appl. Phys. 96, 2033–2036 (2004)

    Article  ADS  Google Scholar 

  21. A. Gaur, G.D. Varma, H.K. Singh, Enhanced low field magnetoresistance in La0.7Sr0.3MnO3/TiO2 composite. J. Phys. D. Appl. Phys. 39, 3531 (2006)

    Article  ADS  Google Scholar 

  22. G. Venkataiah, P.V. Reddy, Structural, magnetic and magnetotransport behavior of some Nd-based perovskite manganites. Solid State Commun. 136, 114–119 (2005)

    Article  ADS  Google Scholar 

  23. M. Navasery, S.A. Halim, A. Dehzangi, N. Soltani, G. Bahmanrokh, M.H. Erfani, A. Kamalianfar, K.Y. Pan, S.C. Chang, S.K. Chen, Electrical properties and conduction mechanisms in La2/3Ca1/3MnO3 thin films prepared by pulsed laser deposition on different substrates. Appl. Phys. A. 116, 1661–1668 (2014)

    Article  ADS  Google Scholar 

  24. T. Sun, J. Jiang, Q. Chen, X. Liu, Improvement of room-temperature TCR and MR in polycrystalline La0.67 (Ca0.27Sr0.06) MnO3 ceramics by Ag2O doping. Ceram. Int. 44, 9865–9874 (2018)

    Article  Google Scholar 

  25. J.C. Debnath, J. Wang, Magnetic and electrical response of Co-doped La0.7Ca0.3MnO3 manganites/insulator system. Phys. B Condens. Matter. 504, 58–62 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are profoundly acknowledged to the Director, Dr. Vasant Sathe, Dr. Rajeev Rawat and Dr. V. Raghavendra Reddy, UGC-DAE Indore, for providing the magnetization and magnetoresistance measurements.

Author information

Authors and Affiliations

Authors

Contributions

AP has prepared the materials, acquired the data and drafted the manuscript. YKL analyzed the data, reviewed and edited the article. SK and RV supported for magnetoresistance measurements. MSR reviewed and edited the manuscript.

Corresponding authors

Correspondence to Y. Kalyana Lakshmi or M. Sreenath Reddy.

Ethics declarations

Conflict of interest

All the authors here with declare that there is no conflict of interest among the listed authors in the manuscript. The authors have no financial support from the organization of companies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purnakanti, A., Lakshmi, Y.K., Kumar, S. et al. Grain boundary modification in La0.67Ca0.33MnO3 manganites with additives: impact on magneto-transport properties. Appl. Phys. A 129, 706 (2023). https://doi.org/10.1007/s00339-023-06995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06995-2

Keywords

Navigation