Skip to main content
Log in

Improvement of Magnetocaloric Effects and Study of Magneto-Transport Behavior of Lanthanum Strontium Manganites by Grain Boundary Management via Additives

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structural, transport and magnetic properties of La0.67Sr0.33MnO3 with additives of ZrO2 and Bi2O3 were investigated and the results are presented. The studied samples showed a ferromagnetic-to-paramagnetic phase transition around 383 K, and a sharp transition was observed for the La0.67Sr0.33MnO3/Bi2O3 sample. A soft ferromagnetic behavior at room temperature was observed in all the La0.67Sr0.33MnO3 samples: however, the sample with bismuth oxide additive exhibited higher saturation magnetization and an enhanced magnetocaloric effect. In addition to a metal–insulator transition, a broad peak was observed in the ferromagnetic metallic region due to inhomogeneities arising from the antiferromagnetic interactions in the samples, and this disappeared with the application of a magnetic field. Positive magnetoresistance was observed for ZrO2 added to La0.67Sr0.33MnO3 for temperatures greater than 200 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X.Y. Zhang, Z.Y. Fu, Y.C. Zhang, L. Li, X.J. He, P.J. Jiao, J. Zhang, Z.B. Gu, and S.T. Zhang, Structure and properties of (1–x)La0.67Sr0.33MnO3/xMnOδ multicomponent composite. Ceram. Int. 47, 28196 (2021).

    Article  CAS  Google Scholar 

  2. H.Y. Hwang, S.-W. Cheong, N.P. Ong, and B. Batlogg, Spin-polarized intergraintunneling in La2/3Ca1/3MnO3. Phys. Rev. Lett. 77, 2041 (1996).

    Article  CAS  Google Scholar 

  3. Z. Wang, X. Wang, M. Li, Y. Gao, Z. Hu, T. Nan, X. Liang, H. Chen, J. Yang, and S. Cash, Highly sensitive flexible magnetic sensor based on anisotropic magnetoresistance effect. Adv. Mater. 28, 9370 (2016).

    Article  CAS  Google Scholar 

  4. C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951).

    Article  CAS  Google Scholar 

  5. H. Xu, K. Huang, C. Li, J. Qi, J. Li, G. Sun, F. Wang, H. Li, Y. Sun, C. Ye, and L. Yang, Enhanced magnetoresistance and electro resistance at high temperature in a nano-matrix manganite. Acta Mater. 238, 118219 (2022).

    Article  CAS  Google Scholar 

  6. Y. Han, W. Wu, G. Jiang, and C. Zhu, In-plane ordered grain boundaries inducing enhanced magnetoresistance in epitaxial manganite films. Appl. Surface Sci. 258, 7245 (2012).

    Article  CAS  Google Scholar 

  7. X. Sun, J. Huang, J. Jian, M. Fan, H. Wang, Q. Li, J.L.M. Manus-Driscoll, P. Lu, X. Zhang, and H. Wang, Three-dimensional strain engineering in epitaxial vertically aligned nanocomposite thin films with tunable magnetotransport properties. Mater. Horiz. 5, 536 (2018).

    Article  CAS  Google Scholar 

  8. J. Hu, H. Qin, J. Chen, and R.K. Zheng, Room temperature magnetoresistance in La0.67Sr0.33Mn1−xCoxO3. J. Appl. Phys. 91, 8912 (2002).

    Article  CAS  Google Scholar 

  9. Z. Zalita, S.A. Halim, K.P. Lim, Z.A. Talib, Z. Hishamuddin, and C.P. Walter, Magnetic, electrical transport and impedance spectroscopy studies on Ti substituted La0.67Sr0.33MnO3 ceramics. Sains Malaysiana. 38, 673 (2009).

    CAS  Google Scholar 

  10. A. de Andres, M. Garcia-Hernandez, J.L. Martinez, and C. Prieto, Low-temperature magnetoresistance in polycrystalline manganites: connectivity versus grain size. Appl. Phys. Lett. 74, 25 (1999).

    Article  Google Scholar 

  11. G. Mucas, P. Anil Kumar, G. Barucca, G. Concas, G. Varvaro, R. Mathieu, and D. Peddis, Designing new ferrite/manganite nanocomposites. Nanoscale 8, 2081 (2016).

    Article  Google Scholar 

  12. P.T. Phong, D.H. Manh, N.V. Dang, L.V. Hong, and I.J. Lee, Enhanced low-field-magneoresistance and electro-magnetic behavior of La0.7Sr0.3MnO3/BaTiO3 composites. Physica B 407, 3774 (2012).

    Article  CAS  Google Scholar 

  13. M. Staruch, D. Hires, A. Chen, Z. Bi, H. Wang, and M. Jain, Enhanced low-field magnetoresistance in La0.67Sr0.33MnO3: MgO composite films. J. Appl. Phys. 110, 113913 (2011).

    Article  Google Scholar 

  14. M. Romero, R. Faccio, B. Montenegro, M.A. Tumelero, C.C.P. Cid, A.A. Pasa, and A.W. Mombrú, Role of conducting polyaniline interphase on the low field magnetoresistance for LSMO-PANI nanocomposites. J. Magn. Magn. Mater. 466, 446 (2018).

    Article  CAS  Google Scholar 

  15. K. Swetha, S. Bharadwaj, J.A. Chelvane, H. Afzal, R. Venkatesh, K.S. Kumar, and K.L. Yanapu, Effect of manganese stoichiometry at B-site on magneto-transport and magnetic properties of La0.67Sr0.33MnO3manganites. Ceram. Int. 48, 12779 (2022).

    Article  CAS  Google Scholar 

  16. K. Swetha, S. Bharadwaj, N.P. Kumar, J.A. Chelvane, and Y.K. Lakshmi, Above room temperature magnetic entropy in non-stoichiometric manganese of La0.67Sr0.33MnO3 manganites. Appl. Phys. A 128, 727 (2022).

    Article  CAS  Google Scholar 

  17. N. Kambhala, S.S. Samatham, R. Venkatesh, V. Ganesan, and S. Angappane, Anomalous magnetotransport properties of Bi doped La0.67Sr0.33MnO3. Physica Status Solidi (b). 255, 1700194 (2018).

    Article  Google Scholar 

  18. T.T. Fang and M.T. Wang, Effects of processing on the sintering behavior, microstructures, and properties of La0.67Sr0.33MnO3 doped with ZrO2. J. Magn. Magn. Mater. 263, 192 (2003).

    Article  CAS  Google Scholar 

  19. M. Uma, N. Balaram, P.R. Sekhar Reddy, V. Janardhanam, V. Rajagopal Reddy, H.J. Yun, S.N. Lee, and C.J. Cho, Structural, chemical and electrical properties of Au/La2O3/n-GaN MIS junction with a High-k lanthanum oxide insulating layer. J. Electron. Mater. 48, 4217 (2019).

    Article  CAS  Google Scholar 

  20. J.L. Hueso, A. Caballero, M. Ocaña, and A.R. González-Elipe, Reactivity of lanthanum substituted cobaltites toward carbon particles. J. Catal. 257, 334 (2008).

    Article  CAS  Google Scholar 

  21. M.P. Dojcinovic, Z.Z. Vasiljevic, J. Kovac, N.B. Tadic, and M.V. Nikolic, Nickel manganite-sodium alginate nano-biocomposite for temperature sensing. Chemosensors. 9, 241 (2021).

    Article  CAS  Google Scholar 

  22. R. Pan, Y. Li, F. Fang, W. Cao, and Y.B. Heb, Surface valence states of Mn ions and magnetic properties of La0.67Sr0.33MnO3 films. Int. J. Mater. Sci. Appl. 5, 222 (2016).

    CAS  Google Scholar 

  23. F. Larachi, J. Pierre, A. Adnot, and A. Bernis, Ce 3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts. Appl. Surf. Sci. 195, 236 (2002).

    Article  CAS  Google Scholar 

  24. A.R. Shelke, G.S. Ghodake, D.Y. Kim, A.V. Ghule, S.D. Kaushik, C.D. Lokhande, and N.G. Deshpande, Correlation of structural, transport and magnetic properties in La1−xZrxMnO3 manganite samples. Ceram. Int. 42, 12038 (2016).

    Article  CAS  Google Scholar 

  25. H.L. Cha and J.I. Yun, Redox behaviors of zirconium in molten LiCl-KCl eutectic salt based on the comproportionation reaction between Zr (0) and Zr (IV). Electrochem. Commun. 84, 86 (2017).

    Article  CAS  Google Scholar 

  26. R. Dudric, R. Bortnic, G. Souca, R. Ciceo-Lucacel, R. Stiufiuc, and R. Tetean, XPS on Nd0.6-xBixSr0.4MnO3 nano powders. Appl. Surface Sci. 487, 17 (2019).

    Article  CAS  Google Scholar 

  27. A. Gasmi, M. Boudard, S. Zemni, F. Hippert, and M. Oumezzine, Influence of non-magnetic Ti4+ ion doping at Mn site on structural and magnetic properties of La0.67Ba0.33MnO3. J. Phys. D Appl. Phys. 42, 225408 (2009).

    Article  Google Scholar 

  28. A.A. Hossain, L.F. Cohen, T. Kodenkandeth, J. MacManus-Driscoll, and N.M. Alford, Influence of oxygen vacancies on magnetoresistance properties of bulk La0.67Ca0.33MnO3−δ. J. Magn. Magn. Mater. 195, 31 (1999).

    Article  Google Scholar 

  29. W.J. Lu, X. Luo, C.Y. Hao, W.H. Song, and Y.P. Sun, Magnetocaloric effect and Griffiths-like phase in La0.67Sr0.33MnO3 nanoparticles. J. Appl. Phys. 104, 113908 (2008).

    Article  Google Scholar 

  30. P. Kameli, H. Salamati, and M. Hakimi, Structural, Magnetic and magnetotransport properties of La0.8Sr0.2MnO3/xLaMnO3 composites. J. Alloys Compd. 463, 18 (2008).

    Article  CAS  Google Scholar 

  31. Y. Endoh, K. Hirota, S. Ishihara, S. Okamoto, Y. Murakami, A. Nishizawa, T. Fukuda, H. Kimura, H. Nojiri, K. Kaneko, and S. Maekawa, Transition between two ferromagnetic states driven by orbital ordering in La0.88Sr0.12MnO3. Phys. Rev. Lett. 82, 4328 (1999).

    Article  CAS  Google Scholar 

  32. L. Pi, L. Zheng, and Y. Zhang, Transport mechanism in polycrystalline La0.825Sr0.175Mn1−xCuxO3. Phys. Rev. B 61, 8917 (2000).

    Article  CAS  Google Scholar 

  33. B. Vertruyen, A. Rulmont, R. Cloots, M. Ausloos, J.F. Fagnard, S. Dorbolo, and P. Vanderbemden, Effects of silicon addition on the electrical and magnetic properties of copper-doped (La, Ca) MnO3 compounds. J. Magn. Magn. Mater. 268, 364 (2004).

    Article  CAS  Google Scholar 

  34. S.L. Ye, W.H. Song, J.M. Dai, K.Y. Wang, S.G. Wang, C.L. Zhang, J.J. Du, Y.P. Sun, and J. Fang, Effect of Ag substitution on the transport property and magnetoresistance of Lamno3. J. Magn. Magn. Mater. 248, 26 (2002).

    Article  CAS  Google Scholar 

  35. A.K. Pradhan, B.K. Roul, J.G. Wen, Z.F. Ren, M. Muralidhar, P. Dutta, D.R. Sahu, S. Mohanty, and P.K. Patro, Enhanced room-temperature magnetoresistance in partially melted La0.67Ca0.33MnO3 manganites. App. Phys. Lett. 76, 763 (2000).

    Article  CAS  Google Scholar 

  36. Z.C. Xia, S.L. Yuan, W. Feng, L.J. Zhang, G.H. Zhang, J. Tang, L. Liu, D.W. Liu, Q.H. Zheng, L. Chen, and Z.H. Fang, Magnetoresistance and transport properties of different impurity doped La0.67Ca0.33MnO3 composite. Solid State Commun. 127, 567 (2003).

    Article  CAS  Google Scholar 

  37. T.F. Zhou, G. Li, T. Qian, and X.G. Li, Magnetic field dependent evolution of band structure in La1−xCaxMnO3 (x= 0.18 and 0.30). Appl. Phys. Lett. 89, 222504 (2006).

    Article  Google Scholar 

  38. T.F. Zhou, G. Li, N.Y. Wang, B.M. Wang, X.G. Li, and Y. Chen, Crossover of magnetoresistance from negative to positive in the heterojunction composed of La0.82Ca0.18MnO3 and 0.5 wt% Nb-doped SrTiO3. Appl. Phys. Lett. 88, 232508 (2006).

    Article  Google Scholar 

  39. A.E.M.A. Mohamed, V. Vega, M. Ipatov, A.M. Ahmed, and B. Hernando, Magnetoresistive and magnetocaloric response of manganite/insulator system. J. Alloy. Compd. 657, 495 (2016).

    Article  CAS  Google Scholar 

  40. J.M.D. Coey, Powder magnetoresistance. J. Appl. Phys. 85, 5576 (1999).

    Article  CAS  Google Scholar 

  41. D. Emin and T. Holstein, Studies of small-polaron motion IV. Adiabatic theory of the Hall effect. Ann. Phys. 53, 439 (1969).

    Article  Google Scholar 

  42. B. Arun, V.R. Akshay, and M. Vasundhara, Observation of enhanced magnetocaloric properties with A-site deficiency in La0.67Sr0.33MnO3 manganite. Dalton Trans. 47, 15512 (2018).

    Article  CAS  Google Scholar 

  43. A. Swain, P.A. Kumar, and V. Gorige, Electrical conduction mechanism for the investigation of charge ordering in Pr0.5Ca0.5MnO3 manganite system. J. Magn. Magn. Mater. 485, 358 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, K. Swetha, wishes to thank the Department of Science and Technology (DST), New Delhi, India, for financial support under Women Scientist Scheme - SR/WOS-A/PM-13-2018 to carry out the present work. The authors would like to express gratitude to the UGC-NRC, School of Physics, University Of Hyderabad (UoH) for providing facilities to undertake XRD and FESEM measurements. The authors also thank the Centre Director of UGC-DAE CSR, Indore, India, for providing MR measurement facilities.

Author information

Authors and Affiliations

Authors

Contributions

YKL (Corresponding Author): Conceptualization, Methodology, Project administration, Supervision, Writing–review & editing. SB: Writing–original draft, Validation, Methodology, Formal analysis. KS: Data curation, Investigation. RV: Data curation, Resources. JAC: Data curation, Resources. KVSK: Methodology, review & editing. All authors discussed the results and contributed to the final manuscript. The authors who do not meet the criteria for authorship are named in the Acknowledgements.

Corresponding author

Correspondence to Y. Kalyana Lakshmi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swetha, K., Bharadwaj, S., Kommuri, K. et al. Improvement of Magnetocaloric Effects and Study of Magneto-Transport Behavior of Lanthanum Strontium Manganites by Grain Boundary Management via Additives. J. Electron. Mater. 52, 8250–8262 (2023). https://doi.org/10.1007/s11664-023-10748-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10748-5

Keywords

Navigation