Skip to main content
Log in

Radiation attenuation attributes of Pb-free titanate-based perovskite modified with M-type hexagonal ferrite addition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ionizing radiation (IonR) such as beta and alpha, positrons, X-rays, and gamma rays cause harmful effects on living organisms, especially humans, and they represent a fundamental problem in the modern age. IonR-protecting materials are compulsory to avert this problem. Hence, the development of good performant IonR shields has gained huge interest. In this work, we investigated the radiation shielding peculiarities of Pb-free barium titanium (BT) added with different amounts of M-type hexaferrite (MH). The impact of MH inclusion on the phase, structural, and shielding capacity of BT sample was systematically investigated. PXRD analysis showed that all BT phases crystallized into a cubic structure. SEM images along with elemental mapping revealed the successful formation of (BT-MH) composites. The radiation shielding peculiarities were measured using HPGe detector and three radioactive sources (Co-60, Cs-137, and Am-241). It was found that at 0.6617, 1.173, and 1.333 MeV, the ceramics with higher MH content have higher mass attenuation coefficient values. The MAC values reduce when the energy increases, which indicates that the ceramics have better shielding capabilities against low energy photons. The half value layer results showed that by adding more MH into the ceramic system, more photons are attenuated at that energy, meaning a thinner shield is needed to attenuate half of the incoming photons. We evaluated the radiation shielding efficiency (RSE) and we found that at energy of 0.05954 MeV, BT-MH2 has the highest RSE of 99.836%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article.

References

  1. N. Tsoulfanidis, S. Landsberger, Measurement & Detection of Radiation (CRC Press, Boca Raton, 2021)

    Google Scholar 

  2. P. Kaur, K.J. Singh, S. Thakur, Evaluation of the gamma radiation shielding parameters of bismuth modified quaternary glass system. AIP Conf. Proc. 1953, 090031 (2018)

    Google Scholar 

  3. M.I. Sayyed, The role of Bi2O3 on radiation shielding characteristics of ternary bismuth tellurite glasses. Optik 270, 169973 (2022)

    ADS  Google Scholar 

  4. E. Mansouri, A. Mesbahi, R. Malekzadeh, A. Mansouri, Shielding characteristics of nanocomposites for protection against X-and gamma rays in medical applications: effect of particle size, photon energy and nano-particle concentration. Rad. Environ. Biophys. 59, 583–600 (2020)

    Google Scholar 

  5. B. Oto, N. Yıldız, F. Akdemir, E. Kavaz, Investigation of gamma radiation shielding properties of various ores. Prog. Nucl Energy 85, 391–403 (2015)

    Google Scholar 

  6. V.P. Singh, N.M. Badiger, N. Chanthima, J. Kaewkhao, Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. Radiat. Phys. Chem. 98, 14–21 (2014)

    ADS  Google Scholar 

  7. A. Eid, N. Zawia, Consequences of lead exposure, and it’s emerging role as an epigenetic modifier in the aging brain. Neurotoxicology 56, 254–261 (2016)

    Google Scholar 

  8. K.A. Naseer, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, Impact of Bi2O3 modifier concentration on barium–zincborate glasses: physical, structural, elastic, and radiation-shielding properties. Eur. Phys. J. Plus 136, 116 (2021)

    Google Scholar 

  9. M.I. Sayyed, K.M. Kaky, E. Şakar, U. Akbaba, M.M. Taki, O. Agar, Gamma radiation shielding investigations for selected germanate glasses. J. Non-Cryst. Solids 512, 33–40 (2019)

    ADS  Google Scholar 

  10. M. Kurudirek, N. Chutithanapanon, R. Laopaiboon, C. Yenchai, C. Bootjomchai, Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass. J. Alloys Compd. 745, 355–364 (2018)

    Google Scholar 

  11. A. Sharma, M.I. Sayyed, O. Agar, H.O. Tekin, Simulation of shielding parameters for TeO2-WO3-GeO2 glasses using FLUKA code. Results Phys. 13, 102199 (2019)

    Google Scholar 

  12. M.I. Abualsayed, Radiation attenuation attributes for BaO-TiO2-SiO2-GeO2 glass series: a comprehensive study using Phy-X software. Radiochim. Acta 111, 211–216 (2023)

    Google Scholar 

  13. K. Miao, X. Wang, D. Hu, Y. Wang, J. Xiao, Fabrication of Y and Fe co-doped BaZr0.13Ti1.46O3 fine-grained ceramics for temperature-stable multilayer ceramic capacitors. Ceram. Int. 43, 9099–9104 (2017)

    Google Scholar 

  14. S.K. Ghosh, S.K. Rout, Induced instability in local structure and ferroelectric polarization of rare earth modified BZT relaxor ceramics. Curr. Appl. Phys. 16, 989–1000 (2016)

    ADS  Google Scholar 

  15. J.Q. Qi, B.B. Liu, H.Y. Tian, H. Zou, Z.X. Yue, L.T. Li, Dielectric properties of barium zirconate titanate (BZT) ceramics tailored by different donors for high voltage applications. Solid State Sci. 14, 1520–1524 (2012)

    ADS  Google Scholar 

  16. K.K. Bajpai, K. Sreenivas, O.P. Thakur, A.R. James, A.K. Shukla, Influence of Cd doping on the electro-strain of barium zirconate titanate ceramics. Ceram. Int. 43, 1963–1967 (2017)

    Google Scholar 

  17. E. Hannachi, M.I. Sayyed, B. Albarzan, A.H. Almuqrin, K.A. Mahmoud, Synthesis and study of structural, optical, and radiation-protective peculiarities of MTiO3 (M = Ba, Sr) metatitanate ceramics mixed with SnO2 oxide. Ceram. Int. 47, 28528–28535 (2021)

    Google Scholar 

  18. M.H.A. Mhareb, Y. Slimani, Y.S. Alajerami, M.I. Sayyed, E. Lacomme, M.A. Almessiere, Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium. Ceram. Int. 46, 28877–28886 (2020)

    Google Scholar 

  19. E. Hannachi, M.I. Sayyed, Y. Slimani, M.A. Almessiere, A. Baykal, M. Elsafi, Synthesis, characterization, and performance assessment of new composite ceramics towards radiation shielding applications. J. Alloys Compd. 899, 163173 (2022)

    Google Scholar 

  20. M.I. Sayyed, E. Hannachi, Y. Slimani, M.U. Khandaker, M. Elsafi, Radiation shielding properties of bi-ferroic ceramics added with CNTs. Radiat. Phys. Chem. 200, 110096 (2022)

    Google Scholar 

  21. E. Hannachi, K.A. Mahmoud, M.I. Sayyed, Y. Slimani, Structure, optical properties, and ionizing radiation shielding performance using Monte Carlo simulation for lead-free BTO perovskite ceramics doped with ZnO, SiO2, and WO3 oxides. Mater. Sci. Semicond. Process. 145, 106629 (2022)

    Google Scholar 

  22. Y. Slimani, M.K. Hamad, I.O. Olarinoye, Y.S. Alajerami, M.I. Sayyed, M.A. Almessiere, M.H.A. Mhareb, Determination of structural features of different Perovskite ceramics and investigation of ionizing radiation shielding properties. J. Mater. Sci.: Mater. Electron. 32, 20867–20881 (2021)

    Google Scholar 

  23. E. Hannachi, M.I. Sayyed, K.A. Mahmoud, Y. Slimani, S. Akhtar, B. Albarzan, A.H. Almuqrin, Impact of tin oxide on the structural features and radiation shielding response of some ABO3 perovskites ceramics (A = Ca, Sr, Ba; B = Ti). Appl. Phys. A 127, 970 (2021)

    ADS  Google Scholar 

  24. R. Valenzuela, Novel applications of ferrites. Phys. Res. Int. 2012, 591839 (2012)

    Google Scholar 

  25. S. Kanagesan, S. Jesurani, R. Velmurugan, S. Prabu, T. Kalaivani, Magnetic properties of Ni–Co doped barium strontium hexaferrite. J. Mater. Sci.: Mater. Electron. 23, 1575–1579 (2012)

    Google Scholar 

  26. N. Yasmin, M. Zahid, H.M. Khan, M. Hashim, M. Ul Islam, S. Yasmin, M. Altaf, B. Nazar, M. Safdar, M. Mirza, Structural and dielectric properties of Gd-Zn substituted Ca0.5Ba0.5Fe12O19 M-type hexa-ferrites synthesized via auto-combustion method. J. Alloys Compd. 774, 962–968 (2019)

    Google Scholar 

  27. V. Tsakaloudi, V.T. Zaspalis, A new Mn–Zn ferrite for high-speed data transmission applications in telecommunication networks. J. Magn. Magn. Mater. 310, 2540–2542 (2007)

    ADS  Google Scholar 

  28. Z. Karimi, L. Karimi, H. Shokrollahi, Nano-magnetic particles used in biomedicine: core and coating materials. Mater. Sci. Eng. C 33, 2465–2475 (2013)

    Google Scholar 

  29. K. Ullah, W.-C. Oh, Fabrication of novel heterostructure-functionalized graphene-based TiO2-Sr-hexaferrite photocatalyst for environmental remediation. Nanomaterials 13, 55 (2023)

    Google Scholar 

  30. A. Karimian, M. Kalantar, Magnetic, gas sensing properties, and structural parameters of barium–calcium hexaferrite synthesized by sol-gel auto combustion method. J. Chin. Chem. Soc. 69, 450–461 (2022)

    Google Scholar 

  31. C. Sudakar, G.N. Subbanna, T.R.N. Kutty, Hexaferrite–FeCo nanocomposite particles and their electrical and magnetic properties at high frequencies. J. Appl. Phys. 94, 6030–6033 (2003)

    ADS  Google Scholar 

  32. I.A. Vedernykova, A.A. Koval, O.V. Antonenko, T.M. Chan, O.S. Shpychak, M.V. Marchenko, Synthesis, technology and analysis of nanoparticles of barium hexaferrite for creation of magnetically controlled drug delivery systems. J. Pharm. Sci. Res. 10(8), 2122–2124 (2018)

    Google Scholar 

  33. A. Najafinezhad, M. Abdellahi, S. Saber-Samandari, H. Ghayour, A. Khandan, Hydroxyapatite-M-type strontium hexaferrite: a new composite for hyperthermia applications. J. Alloys Compd. 734, 290–300 (2018)

    Google Scholar 

  34. S.A. Mathews, D.R. Babu, Analysis of the role of M-type hexaferrite-based materials in electromagnetic interference shielding. Curr. Appl. Phys. 29, 39–53 (2021)

    ADS  Google Scholar 

  35. T. Kagotani, D. Fujiwara, S. Sugimoto, K. Inomata, M. Homma, Enhancement of GHz electromagnetic wave absorption characteristics in aligned M-type barium ferrite Ba1−xLaxZnxFe12−x−y(Me0.5Mn0.5)yO19 (x = 0.0–0.5; y = 1.0–3.0, Me: Zr, Sn) by metal substitution. J. Magn. Magn. Mater. 272, E1813–E1815 (2004)

    ADS  Google Scholar 

  36. S. Sugimoto, K. Haga, T. Kagotani, K. Inomata, Microwave absorption properties of Ba M-type ferrite prepared by a modified coprecipitation method. J. Magn. Magn. Mater. 290, 1188–1191 (2005)

    ADS  Google Scholar 

  37. R.K. Bheema, A.K. Ojha, A.V. Praveen Kumar, K.C. Etika, Synergistic influence of barium hexaferrite nanoparticles for enhancing the EMI shielding performance of GNP/epoxy nanocomposites. J. Mater. Sci. 57(19), 8714–8726 (2022)

    ADS  Google Scholar 

  38. S.D. Raut, V. Awasarmol, D. Gaikwad, P. Pawar, Effective atomic number and effective electron density for barium ferrite and barium hexaferrite in the energy range 122–1330 keV. Nucl. Chem. Nucl. Probes pp. 102–103 (2017)

  39. A.M. Ali, S.A.M. Issa, H. Algarni, H.O. Tekin, H.M.H. Zakaly, M.A. Sayed, M. Rashad, Structural, surface morphology and radiation shielding properties of barium ferrite powder. Phys. Scr. 96(9), 095805 (2021)

    ADS  Google Scholar 

  40. B.C. Reddy, Y.S. Vidya, H.C. Manjunatha, K.N. Sridhar, U. Pasha, L. Seenappa, B. Sadashivamurthy et al., Synthesis and characterization of Barium ferrite nano-particles for X-ray/gamma radiation shielding and display applications. Prog. Nucl. Energy 147, 104187 (2022)

    Google Scholar 

  41. E. Hannachi, M.I. Sayyed, Y. Slimani, M. Elsafi, Structural, optical and radiation shielding peculiarities of strontium titanate ceramics mixed with tungsten nanowires: an experimental study. Opt. Mater. 135, 113317 (2023)

    Google Scholar 

  42. M. Elsafi, N. Almousa, N. Al-Harbi, S. Yasmin, M.I. Sayyed, Ecofriendly and radiation shielding properties of newly developed epoxy with waste marble and WO3 nanoparticles. J. Mater. Res. Technol. 22, 269–277 (2023)

    Google Scholar 

  43. E. Hannachi, M.I. Sayyed, Y. Slimani, M.A. Almessiere, A. Baykal, M. Elsafi, Structure and radiation-shielding characteristics of BTO/MnZnFeO ceramic composites. J. Phys. Chem. Solids 174, 111132 (2023)

    Google Scholar 

  44. M. Singh, B.C. Yadav, A. Ranjan, M. Kaur, S.K. Gupta, Synthesis and characterization of perovskite barium titanate thin film and its application as LPG sensor. Sens. Actuators B Chem. 241, 1170–1178 (2017)

    Google Scholar 

  45. M.A. Almessiere, Y. Slimani, H.S. El Sayed, A. Baykal, Ca2+ and Mg2+ incorporated barium hexaferrites: structural and magnetic properties. J. Sol-Gel Sci. Technol. 88, 628–638 (2018)

    Google Scholar 

  46. Y. Slimani, M.A. Almessiere, S.E. Shirsath, E. Hannachi, G. Yasin, A. Baykal, B. Ozcelik, Investigation of structural, morphological, optical, magnetic, and dielectric properties of (1-x)BaTiO3/xSr0.92Ca0.04Mg0.04Fe12O19 composites. J. Magn. Magn. Mater. 510, 166933 (2020)

    Google Scholar 

  47. P. Jaita, N. Boothrawong, N. Lertcumfu, P. Malasri, P. Jarupoom, T. Tunkasiri, G. Rujijanagul, Electrical and mechanical properties of modified barium titanate by doping an m-type hexagonal ferrite. Integr. Ferroelectr. 214(1), 2–10 (2021)

    ADS  Google Scholar 

  48. A. Motamedi, R. Rahmanifard, M. Adibi, Synthesis and microwave absorption characteristics of BaFe12O19/BaTiO3/MWCNT/polypyrrole quaternary composite. Synth. Met. 280, 116873 (2021)

    Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

EH: supervision, investigation; methodology, writing—original draft, writing—review and editing, conceptualization MIS: formal analysis, investigation, validation, writing—original draft, writing—review and editing, YS: conceptualization, methodology, writing—review and editing, MAA investigation, AB validation, writing—review and editing, ME: investigation, validation, writing—original draft.

Corresponding author

Correspondence to E. Hannachi.

Ethics declarations

Conflict of interest

The authors have no competing interests that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannachi, E., Sayyed, M.I., Slimani, Y. et al. Radiation attenuation attributes of Pb-free titanate-based perovskite modified with M-type hexagonal ferrite addition. Appl. Phys. A 129, 711 (2023). https://doi.org/10.1007/s00339-023-06984-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06984-5

Keywords

Navigation