Skip to main content
Log in

The Role of Ytterbium (Yb2O3) in the Radiation Shielding Properties of Barium Titanium Borate Glasses (B2O3-TiO2-BaO) in Terms of γ and β Radiations

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Barium titanium borate glasses doped with ytterbium with the chemical composition of B2O3-TiO2-BaO-Yb2O3 are described as shields exhibiting excellent performance for β and γ applications. This study used the Phy-X and XCOM codes and the GEANT4 toolkit to calculate and simulate the gamma attenuation factors in a 0.02-MeV to 15-MeV range. From the linear attenuation coefficient and mass attenuation coefficient (MAC) values, the half-value layer (HVL), tenth value layer, mean free path (MFP), effective atomic number (Zeff), electronic cross-section, and atomic cross-section have been determined. In addition, the energy absorption build-up factors and exposure build-up factors values of glass samples were estimated for the energy spectrum spans from 0.02 MeV to 15 MeV and penetration depths up to 40 MFP. Additionally, we analyzed the heaviness (H%) of the selected samples, utilizing this crucial metric as a fundamental parameter to comprehend the distinctive properties of diverse materials. Furthermore, we determined the radiation protection efficiency (RPE), and observed that it is prominent at lower energies, gradually decreasing as the energy level rises. Incorporating Yb3O2 resulted in an augmentation of the RPE values, thereby enhancing the shielding capabilities of the glass system. The ESTAR program assessed the β-shielding action of the inspected glasses by determining the total stopping power (TSP) and the continuous slowing down approximation (CSDA) range. The findings indicate that the incorporation of ytterbium positively impacts the density, consequently enhancing the shielding proficiency, of the sample against β- and γ-rays. In BTBaY4 glass, the variant with the greatest concentration of Yb2O3 exhibits the greatest values for MAC, Zeff, and the most minimal HVL. Moreover, this type of glass has low concentrations of Yb2O3 and is free from lead materials, but shows good shielding properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. F.M. Clegg, M. Sears, M. Friesen, T. Scarato, R. Metzinger, C. Russell, A. Stadtner, and A.B. Miller, Building science and radiofrequency radiation: What makes smart and healthy buildings. Build. Environ. 176, 106324 (2020).

    Article  Google Scholar 

  2. W. Guo-hui, H. Man-li, C. Fan-chao, F. Jun-dong, and D. Yao-dong, Enhancement of flame retardancy and radiation shielding properties of ethylene vinyl acetate based radiation shielding composites by EB irradiation. Prog. Nucl. Energy 112, 225 (2019).

    Article  Google Scholar 

  3. M. Donya, M. Radford, A. ElGuindy, and M.H.Y. David Firmin, Radiation in medicine: origins, risks and aspirations. Glob. Cardiol. Sci. Pract. 2014(4), 437 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. M.S. Yim, and H. Ocken, Radiation dose management in nuclear power plants. Prog. Nucl. Energy 39(1), 31 (2001).

    Article  CAS  Google Scholar 

  5. A.I. Elazaka, H.M.H. Zakaly, S.A.M. Issa, M. Rashad, H.O. Tekin, H.A. Saudi, V.H. Gillette, T.T. Erguzel, and A.G. Mostafa, New approach to removal of hazardous Bypass Cement Dust (BCD) from the environment: 20Na2O-20BaCl2-(60–x)B2O3-(x)BCD glass system and Optical, mechanical, structural and nuclear radiation shielding competences. J. Hazard. Mater. 403, 123738 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. B.B.L.H. Levitt, Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environ. Rev. 18, 369 (2010).

    Article  Google Scholar 

  7. A.A. Ali, Y.S. Rammah, R. El-Mallawany, and D. Souri, FTIR and UV spectra of pentaternary borate glasses. Measurement 105, 72 (2017).

    Article  Google Scholar 

  8. Y.S. Rammah, M.I. Sayyed, A.A. Ali, H.O. Tekin, and R. El-Mallawany, Optical properties and gamma-shielding features of bismuth borate glasses. Appl. Phys. A 124(12), 832 (2018).

    Article  Google Scholar 

  9. A.S. Abouhaswa, H.M.H. Zakaly, S.A.M. Issa, M.E.M.R. Pyshkina, and M. Mya, lead borate glasses and synergistic impact of lanthanum oxide additive: optical and nuclear radiation shielding behaviors. J. Mater. Sci. Mater. Electron. 31(17), 14494 (2020).

    Article  CAS  Google Scholar 

  10. M. Papachristoforou, and I. Papayianni, Radiation shielding and mechanical properties of steel fiber reinforced concrete (SFRC) produced with EAF slag aggregates. Radiat. Phys. Chem. 149, 26 (2018).

    Article  CAS  Google Scholar 

  11. O. Lotfi-Omran, A. Sadrmomtazi, and I.M. Nikbin, A comprehensive study on the effect of water to cement ratio on the mechanical and radiation shielding properties of heavyweight concrete. Constr. Build. Mater. 229, 116905 (2019).

    Article  CAS  Google Scholar 

  12. H.H. Negm, A.A. Sdeek, and A.A. Ebrahim, A comprehensive investigation of the impact of NiO on the radiation attenuation characteristics of (CaO-Li2O-NiO-SiO2) glass structure. J. Electron. Mater. 53(2), 945 (2024).

    Article  CAS  Google Scholar 

  13. H.H. Negm, M.A. Abdo, and M.S. Sadeq, Impact of Y2O3 on structural, mechanical and nonlinear optical properties of CrO3-Na2O-B2O3 glasses. Optik (Stuttg). 274, 170546 (2023).

    Article  CAS  Google Scholar 

  14. H.H. Negm, M.A. Abdo, and M.S. Sadeq, Impact of Y2O3 on the structural, linear and nonlinear optical parameters of Na2O-Fe2O3-B2O3 glass. Optik (Stuttg) 283, 170923 (2023).

    Article  CAS  Google Scholar 

  15. H.H. Negm, E.A. Allam, E. Abdeltwab, M. Mostafa, M.E. Mahmoud, and A. El-Taher, A new nanocomposite of copper oxide and magnetite intercalated into Attapulgite clay to enhance the radiation shielding. Radiat. Phys. Chem. 216, 111398 (2024).

    Article  CAS  Google Scholar 

  16. H. Negm, H. Abd-Allah, A.Y. Abdel-Latief, M.A. Abdel-Rahim, A. El-Taher, and N.M. Shaalan, Fabrication and characterization of structured Zn1-xCdxWO4 (0≤x≤1) with tunable photoluminescent and promising applicable heterometallic nanocomposites in shielding properties. Radiat. Phys. Chem. 215, 111335 (2024).

    Article  CAS  Google Scholar 

  17. I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, and A. Akkurt, Radiation shielding of concretes containing different aggregates. Cem. Concr. Compos. 28, 153 (2006).

    Article  CAS  Google Scholar 

  18. C.M. Lee, Y.H. Lee, and K.J. Lee, Cracking effect on gamma-ray shielding performance in concrete structure. Prog. Nucl. Energy 49(4), 303 (2007).

    Article  Google Scholar 

  19. A.M.A. Mostafa, E.F. Agammy, M. Al-Zaibani, R.M. Ramadan, S. Issa, and H.O. Tekin, Characterization of synthesized xBaO-(40–x)Li2O-60B2O3 glass system: a multi-dimensional research on optical and physical properties. J. Mater. Sci. Mater. Electron. 32(12), 16990 (2021).

    Article  CAS  Google Scholar 

  20. I. Boukhris, I. Kebaili, M.S. Al-Buriahi, and M.I. Sayyed, Radiation shielding properties of tellurite-lead-tungsten glasses against gamma and beta radiations. J. Non Cryst. Solids 551, 120430 (2021).

    Article  CAS  Google Scholar 

  21. M. Monisha, A.N. D’Souza, V. Hegde, N.S. Prabhu, M.I. Sayyed, G. Lakshminarayana, and S.D. Kamath, Dy3+ doped SiO2–B2O3–Al2O3–NaF–ZnF2 glasses: an exploration of optical and gamma radiation shielding features. Curr. Appl. Phys. 20(11), 1207 (2020).

    Article  Google Scholar 

  22. M.S. Al-Buriahi, F.I. El-Agawany, C. Sriwunkum, H. Akyıldırım, H. Arslan, B.T. Tonguc, R. El-Mallawany, and Y.S. Rammah, Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Phys. B Condens. Matter. 581, 411946 (2020).

    Article  CAS  Google Scholar 

  23. R. Bagheri, A. Khorrami Moghaddam, and H. Yousefnia, Gamma ray shielding study of barium–bismuth–borosilicate glasses as transparent shielding materials using MCNP-4C Code, XCOM program, and available experimental data. Nucl. Eng. Technol. 49(1), 216 (2017).

    Article  Google Scholar 

  24. M.S. Al-Buriahi, M. Rashad, A. Alalawi, and M.I. Sayyed, Effect of Bi2O3 on mechanical features and radiation shielding properties of boro-tellurite glass system. Ceram. Int. 46(10), 16452 (2020).

    Article  CAS  Google Scholar 

  25. H.O. Tekin, L.R.P. Kassab, O. Kilicoglu, E.S. Magalhães, S.A.M. Issa, and G.R. da Silva Mattos, Newly developed tellurium oxide glasses for nuclear shielding applications: an extended investigation. J. Non Cryst. Solids 528, 119763 (2020).

    Article  CAS  Google Scholar 

  26. M.G. Dong, R. El-Mallawany, M.I. Sayyed, and H.O. Tekin, Shielding properties of 80TeO2–5TiO2–(15–x) WO3–xAnOm glasses using WinXCom and MCNP5 code. Radiat. Phys. Chem. 141, 172 (2017).

    Article  CAS  Google Scholar 

  27. D.K. Gaikwad, M.I. Sayyed, S.S. Obaid, S.A.M. Issa, and P.P. Pawar, Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses. J. Alloys Compd. 765, 451 (2018).

    Article  CAS  Google Scholar 

  28. A. Kumar, Gamma ray shielding properties of PbO-Li2O-B2O3 glasses. Radiat. Phys. Chem. 136, 50 (2017).

    Article  CAS  Google Scholar 

  29. T.A. Taha, and A.S. Abouhaswa, Structure, optical and magnetic properties of barium sodium borate/cobalt oxide glass structures. Opt. Quantum Electron 55(6), 483 (2023).

    Article  CAS  Google Scholar 

  30. A.S. Abouhaswa, and T.A. Mohaymen Taha, Synthesis, optical and magnetic properties of Nd2O3/borate strontium fluoride glasses. Ceram. Int. 50(7), 11032 (2024).

    Article  CAS  Google Scholar 

  31. R.M. Ahmed, T.A. Taha, and F.M. Ezz-Eldin, Investigation of Sm2O3 effect on opto-electrical parameters and dielectric properties of some fluorophosphate glasses. J. Mater. Sci. Mater. Electron. 32(24), 28919 (2021).

    Article  CAS  Google Scholar 

  32. L. Shamshad, G. Rooh, K. Kirdsiri, N. Srisittipokakun, B. Damdee, H.J. Kim, and J. Kaewkhao, Effect of alkaline earth oxides on the physical and spectroscopic properties of Dy3+- doped Li2O-B2O3 glasses for white emitting material application. Opt. Mater. (Amst). 64, 268 (2017).

    Article  CAS  Google Scholar 

  33. S. Yusub, C. Rajyasree, A. Ramesh Babu, P.M. Vinaya Teja, and R.D. Krishna, Influence of alkaline earth oxides (R = Ca, Sr and Ba) on spectroscopic and dielectric studies of iron doped RO–Na2O–B2O3 glasses. J. Non Cryst. Solids 364(1), 62 (2013).

    Article  CAS  Google Scholar 

  34. R.A. Talewar, S. Mahamuda, K. Swapna, M. Venkateswarlu, and A.S. Rao, Spectroscopic studies of Sm3+ ions doped alkaline-earth chloro borate glasses for visible photonic applications. Mater. Res. Bull. 105, 45 (2018).

    Article  CAS  Google Scholar 

  35. S.Y. Marzouk, M.A. Azooz, H.M. Elsaghier, N.A. Zidan, and W. Abbas, Structural and optical properties of barium titanium borate glasses doped with ytterbium. J. Mater. Sci. Mater. Electron. 33(22), 18054 (2022).

    Article  CAS  Google Scholar 

  36. F. Laariedh, A. Kumar, and M. Al-Buriahi, Experimental studies on the gamma photons-shielding competence of TeO2–PbO–BaO–Na2O–B2O3 glasses. Appl. Phys. A 126(1), 1–9 (2019).

    Google Scholar 

  37. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gomez Cadenas, I. Gonzalez, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche, Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect Assoc. Equip. 506(3), 250 (2003).

    Article  CAS  Google Scholar 

  38. M. J. Berger, J. H. Hubbell, XCOM: Photon cross sections on a personal computer. 1987

  39. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, and M. Kurudirek, Phy-X / PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020).

    Article  Google Scholar 

  40. M. Berger, J. Coursey, M. Zucker, and J. Chang, ESTAR, PSTAR, and ASTAR: computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions; National Institute of Standards and Technology: Gaithersburg (2005)

  41. M. Al-Buriahi, and Y. Rammah, Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses. Appl. Phys. A 125(10), 1–9 (2019).

    Article  Google Scholar 

  42. M.I. Sayyed, H. Akyildirim, M.S. Al-Buriahi, E. Lacomme, and G.B. Rachid Ayad, Oxyfluoro-tellurite-zinc glasses and the nuclear-shielding ability under the substitution of AlF3 by ZnO. Appl. Phys. A 126(2), 1–12 (2020).

    Article  Google Scholar 

  43. Y. Al-Hadeethi, and M.I. Sayyed, Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code. Ceram. Int. 45(18), 24858 (2019).

    Article  CAS  Google Scholar 

  44. M.S. Al-Buriahi, and B.T. Tonguc, Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography. Radiat. Phys. Chem. 166, 108507 (2020).

    Article  CAS  Google Scholar 

  45. P. Singh, T. Kaur, and J. Sharma, Feasibility of Pb-Zn binary alloys as gamma rays shielding materials. Int. J. Pure Appl. Phys. ISSN 13(222), 0973–1776 (2017).

    Google Scholar 

  46. M. Al-Buriahi, H. Arslan, Baris, and B.T. Tonguc, Mass attenuation coefficients, water and tissue equivalence properties of some tissues by Geant4, XCOM and experimental data. Indian J. Pure Appl. Phys. 57, 433 (2019).

    Google Scholar 

  47. R. Kurtulus, C. Kurtulus, and T. Kavas, Physical, optical, thermal, mechanical, and photon shielding properties of Rb2O-reinforced SiO2-Na2O-CaO-MgO-Al2O3 glass system. J. Mater. Sci. Mater. Electron. 32(6), 7801 (2021).

    Article  CAS  Google Scholar 

  48. Y.S. Rammah, A.A. Ali, R. El-Mallawany, and F.I. El-Agawany, Fabrication, physical, optical characteristics and gamma-ray competence of novel bismo-borate glasses doped with Yb2O3 rare earth. Phys. B Condens. Matter. 583, 412055 (2020).

    Article  CAS  Google Scholar 

  49. H.O. Tekin, S.A.M. Issa, E. Kavaz, and E.E. Altunsoy Guclu, The direct effect of Er2O3 on bismuth barium telluro borate glasses for nuclear security applications. Mater. Res. Express. 6(11), 115212 (2019).

    Article  Google Scholar 

  50. S. Issa, M. Sayyed, and M. Kurudirek, Investigation of gamma radiation shielding properties of some zinc tellurite glasses. J. Phys. Sci. 27(3), 97 (2016).

    Article  CAS  Google Scholar 

  51. S.A.M. Issa, M.I. Sayyed, and M. Kurudirek, Study of gamma radiation shielding properties of ZnO−TeO2 glasses. Bull. Mater. Sci. 40(4), 841 (2017).

    Article  CAS  Google Scholar 

  52. S.A.M. Issa, T.A. Hamdalla, and A.A.A. Darwish, Effect of ErCl3 in gamma and neutron parameters for different concentration of ErCl3-SiO2 (EDFA) for the signal protection from nuclear radiation. J. Alloys Compd. 698, 234 (2017).

    Article  CAS  Google Scholar 

  53. S.A.M. Issa, A.M. Ali, G. Susoy, H.O. Tekin, Y.B. Saddeek, R. Elsaman, H.H. Somaily, and H. Algarni, Mechanical, physical and gamma ray shielding properties of xPbO-(50–x) MoO3–50V2O5 (25 ≤ x ≤ 45 mol%) glass system. Ceram. Int. 46(12), 20251 (2020).

    Article  CAS  Google Scholar 

  54. R. Bagheri, and R. Adeli, Gamma-ray shielding properties of phosphate glasses containing Bi2O3, PbO, and BaO in different rates. Radiat. Phys. Chem. 174, 108918 (2020).

    Article  CAS  Google Scholar 

  55. G. Lakshminarayana, Y. Elmahroug, A. Kumar, M.G. Dong, D.E. Lee, J. Yoon, and T. Park, TeO2–B2O3–ZnO–La2O3 glasses: γ-ray and neutron attenuation characteristics analysis by WinXCOM program, MCNP5, Geant4, and Penelope simulation codes. Ceram. Int. 46(10), 16620 (2020).

    Article  CAS  Google Scholar 

  56. A. Aşkın, Evaluation of the radiation shielding capabilities of the Na2B4O7–SiO2–MoO3-Dy2O3 glass quaternary using Geant4 simulation code and Phy-X/PSD database. Ceram. Int. 46(7), 9096 (2020).

    Article  Google Scholar 

  57. Ö. Akçalı, M. Çağlar, O. Toker, B. Bilmez, H.B. Kavanoz, and O. İçelli, An investigation on gamma-ray shielding properties of quaternary glassy composite (Na2Si3O7/Bi2O3/B2O3/Sb2O3) by BXCOM and MCNP 62 code. Prog. Nucl. Energy 125, 103364 (2020).

    Article  Google Scholar 

  58. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24(17), 1389 (1997).

    Article  CAS  Google Scholar 

  59. M.E. Mahmoud, A.M. El-Khatib, M.S. Badawi, A.R. Rashad, R.M. El-Sharkawy, and A.A. Thabet, Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat. Phys. Chem. 145, 160 (2018).

    Article  CAS  Google Scholar 

  60. G. Almisned, H.O. Tekin, A. Ene, S.A.M. Issa, G. Kilic, and H.M.H. Zakaly, A closer look on nuclear radiation shielding properties of Eu3+ doped heavy metal oxide glasses: Impact of Al2O3/pbo substitution. Materials (Basel) 14(18), 5334 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. A.M. Madbouly, O.I. Sallam, S.A.M. Issa, M. Rashad, A. Hamdy, H.O. Tekin, and H.M.H. Zakaly, Experimental and FLUKA evaluation on structure and optical properties and γ-radiation shielding capacity of bismuth borophosphate glasses. Prog. Nucl. Energy 148(March), 104219 (2022).

    Article  CAS  Google Scholar 

  62. Z.A. Alrowaili, T.A. Taha, M.I. Brahim, and K.M.A. Saron, Synthesis, optical absorption and radiation shielding performance of sodium zinc borate-Er2O3 glasses. J. Electron. Mater. 50(3), 1102 (2021).

    Article  CAS  Google Scholar 

  63. Z.A. Alrowaili, T.A. Taha, M. Ibrahim, and K.M.A. Saron, Investigation of the structure and radiation shielding properties of borate/Y2O3 glasses. Eur. Phys. J. Plus. 136, 567 (2021).

    Article  CAS  Google Scholar 

  64. H.M.H. Zakaly, Y.S. Rammah, H.O. Tekin, A. Ene, A. Badawi, and S.A.M. Issa, Nuclear shielding performances of borate/sodium/potassium glasses doped with Sm3+ ions. J. Mater. Res. Technol. 18, 1424 (2022).

    Article  CAS  Google Scholar 

  65. B. Ha, Zur Theorie des durchgangs schneller korpuskularstrahlen durch materie. Ann. Phys. 5, 325 (1930).

    Google Scholar 

  66. D. Brice, Stopping powers for electrons and positrons (ICRU report 37; International commission on radiation units and measurements, Bethesda, Maryland, USA, 1984). Nucl. Instrum. Methods Phys. Res. Sect. B-beam Interact. Mater. Atoms Nucl. Instrum. Meth. Phys. Res. B. 12, 187 (1985).

    Article  Google Scholar 

  67. H. Bethe, Braking formula for electrons of relativistic speed. Eur. Phys. J. H. 39(5), 537 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AAS & HHN: Conceived and designed the study, performed the simulation/calculations, analyzed the data, and wrote the manuscript. AAE: Supervised the study and provided critical feedback on the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Hani H. Negm or Asmaa A. Sdeek.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negm, H.H., Sdeek, A.A. & Ebrahim, A.A. The Role of Ytterbium (Yb2O3) in the Radiation Shielding Properties of Barium Titanium Borate Glasses (B2O3-TiO2-BaO) in Terms of γ and β Radiations. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11073-1

Keywords

Navigation