Skip to main content
Log in

Synthesis and characterization of doped-ZnO thin films over wide temperature range for applications as a transparent conducting material

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study pure and Mg, Ga, Al-doped ZnO thin films were prepared using sol–gel and spin-coating methods. The effect of dopant ion substitution on structural, morphological, optical and low temperature electrical properties of thin films were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), UV–Visible spectroscopy, spectro fluorophotometer and two probe resistivity measurement method, respectively. The XRD result confirmed the wurtzite structure of prepared thin films without the presence of any characteristic impurity peak of Mg, Ga and Al. The average crystallite size of ZnO thin film was found to be 22.17 nm which was found to decrease to 21.13 nm, 16.06 nm and 16.03 nm when Mg2+, Ga3+ and Al3+ ions substitutes Zn2+ ions, respectively. The photoluminescence study had confirmed the presence of defect states in the prepared thin films. Furthermore, the low temperature dependent electrical study had shown that Ga-doping decreased the electrical resistivity and confirmed the presence of thermally activated and hopping type conduction mechanism up to 100 K. Thus, the ability of Ga-doping to facilitate the conduction process down up to 100 K, low activation energy of 0.23 eV and high optical transmittance in Ga and Ga-Mg doped-ZnO thin films makes it a suitable transparent and conductive material for optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. A.K. Zak, W.A. Majid, M.R. Mahmoudian, M. Darroudi, R. Yousefi, Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study. Adv. Powder Technol. 24(3), 618–624 (2013). https://doi.org/10.1016/j.apt.2012.11.008

    Article  Google Scholar 

  2. R. Kara, L. Mentar, A. Azizi, Synthesis and characterization of Mg-doped ZnO thin-films electrochemically grown on FTO substrates for optoelectronic applications. RSC Adv. 10(66), 40467–40479 (2020). https://doi.org/10.1039/D0RA06541B

    Article  ADS  Google Scholar 

  3. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Photovoltaic technology: the case for thin-film solar cells. Science 285(5428), 692–698 (1999). https://doi.org/10.1126/science.285.5428.692

    Article  Google Scholar 

  4. S. Singh, P. Thiyagarajan, K.M. Kant, D. Anita, S. Thirupathiah, N. Rama, M.R. Rao, Structure, microstructure and physical properties of ZnO based materials in various forms: bulk, thin film and nano. J. Phys. D 40(20), 6312 (2007)

    Article  ADS  Google Scholar 

  5. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961). https://doi.org/10.1063/1.1736034

    Article  ADS  Google Scholar 

  6. X.H. Shi, K.J. Xu, Properties of fluorine-doped tin oxide films prepared by an improved sol-gel process. Mater. Sci. Semicond. Process. 58, 1–7 (2017). https://doi.org/10.1016/j.mssp.2016.09.038

    Article  Google Scholar 

  7. Z.Z. Li, Z.Z. Chen, W. Huang, S.H. Chang, X.M. Ma, The transparence comparison of Ga-and Al-doped ZnO thin films. Appl. Surf. Sci. 257(20), 8486–8489 (2011). https://doi.org/10.1016/j.apsusc.2011.04.138

    Article  ADS  Google Scholar 

  8. A. Stadler, Transparent conducting oxides—an up-to-date overview. Mater. 5(4), 661–683 (2012). https://doi.org/10.3390/ma5040661

    Article  Google Scholar 

  9. P.P. Edwards, A. Porch, M.O. Jones, D.V. Morgan, R.M. Perks, Basic materials physics of transparent conducting oxides. Dalton Trans. 19, 2995–3002 (2004). https://doi.org/10.1039/B408864F

    Article  Google Scholar 

  10. P. Mondal, D. Das, Further improvements in conducting and transparent properties of ZnO: Ga films with perpetual c-axis orientation: materials optimization and application in silicon solar cells. Appl. Surf. Sci. 411, 315–320 (2017). https://doi.org/10.1016/j.apsusc.2017.03.171

    Article  ADS  Google Scholar 

  11. N. Srinatha, P. Raghu, H.M. Mahesh, B. Angadi, Spin-coated Al-doped ZnO thin films for optical applications: Structural, micro-structural, optical and luminescence studies. J. Alloys Compd. 722, 888–895 (2017). https://doi.org/10.1016/j.jallcom.2017.06.182

    Article  Google Scholar 

  12. K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photon. 6(12), 809–817 (2012). https://doi.org/10.1038/nphoton.2012.282

    Article  ADS  Google Scholar 

  13. A.N. Mallika, A.R. Reddy, K.S. Babu, C. Sujatha, K.V. Reddy, Structural and photoluminescence properties of Mg substituted ZnO nanoparticles. Opt. Mater. 36(5), 879–884 (2014). https://doi.org/10.1016/j.optmat.2013.12.015

    Article  ADS  Google Scholar 

  14. M. Kaddes, K. Omri, N. Kouaydi, M. Zemzemi, Structural, electrical and optical properties of ZnO nanoparticle: combined experimental and theoretical study. Appl. Phys. A 124, 1–7 (2018). https://doi.org/10.1007/s00339-018-1921-x

    Article  Google Scholar 

  15. F.H. Wang, H.P. Chang, C.C. Tseng, C.C. Huang, H.W. Liu, Influence of hydrogen plasma treatment on Al-doped ZnO thin films for amorphous silicon thin film solar cells. Curr. Appl. Phys. 11(1), S12–S16 (2011). https://doi.org/10.1016/j.cap.2010.11.109

    Article  ADS  Google Scholar 

  16. D.T. Phan, A.A.M. Farag, F. Yakuphanoglu, G.S. Chung, Optical and photoluminescence properties of Ga doped ZnO nanostructures by sol-gel method. J. Electroceram. 29, 12–22 (2012). https://doi.org/10.1007/s10832-012-9731-6

    Article  Google Scholar 

  17. Z.R. Khan, M.S. Khan, M. Zulfequar, M.S. Khan, Optical and structural properties of ZnO thin films fabricated by sol-gel method. Mater. Sci. Appl. 2(5), 340–345 (2011)

    Google Scholar 

  18. Y. Natsume, H. Sakata, Zinc oxide films prepared by sol-gel spin-coating. Thin Solid Films 372(1–2), 30–36 (2000). https://doi.org/10.1016/S0040-6090(00)01056-7

    Article  ADS  Google Scholar 

  19. S. Bandyopadhyay, G.K. Paul, R. Roy, S.K. Sen, S. Sen, Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol–gel technique. Mater. Chem. Phys. 74(1), 83–91 (2002). https://doi.org/10.1016/S0254-0584(01)00402-3

    Article  Google Scholar 

  20. Y.Z. Yoo, T. Fukumura, Z. Jin, K. Hasegawa, M. Kawasaki, P. Ahmet, H. Koinuma, ZnO–CoO solid solution thin films. J. Appl. Phys. 90(8), 4246–4250 (2001). https://doi.org/10.1063/1.1402142

    Article  ADS  Google Scholar 

  21. O.D. Jayakumar, I.K. Gopalakrishnan, S.K. Kulshreshtha, The structural and magnetization studies of Co-doped ZnO co-doped with Cu: synthesized by co-precipitation method. J. Mater. Chem. 15(34), 3514–3518 (2005). https://doi.org/10.1039/B507201H

    Article  Google Scholar 

  22. R. Kumar, N. Khare, Temperature dependence of conduction mechanism of ZnO and Co-doped ZnO thin films. Thin Solid Films 516(6), 1302–1307 (2008). https://doi.org/10.1016/j.tsf.2007.06.121

    Article  ADS  Google Scholar 

  23. D. Fang, K. Lin, T. Xue, C. Cui, X. Chen, P. Yao, H. Li, Influence of Al doping on structural and optical properties of Mg–Al co-doped ZnO thin films prepared by sol–gel method. J. Alloys Compd. 589, 346–352 (2014). https://doi.org/10.1016/j.jallcom.2013.11.061

    Article  Google Scholar 

  24. P.R. Kumar, C.S. Kartha, K.P. Vijayakumar, F. Singh, D.K. Avasthi, Effect of fluorine doping on structural, electrical and optical properties of ZnO thin films. Mater. Sci. Eng. B 117(3), 307–312 (2005). https://doi.org/10.1016/j.mseb.2004.12.040

    Article  Google Scholar 

  25. S.S. Shinde, P.S. Shinde, Y.W. Oh, D. Haranath, C.H. Bhosale, K.Y. Rajpure, Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films. Appl. Surf. Sci. 258(24), 9969–9976 (2012). https://doi.org/10.1016/j.apsusc.2012.06.058

    Article  ADS  Google Scholar 

  26. F. Baig, M.W. Ashraf, A. Asif, M. Imran, A comparative analysis for effects of solvents on optical properties of Mg doped ZnO thin films for optoelectronic applications. Optik 208, 164534 (2020). https://doi.org/10.1016/j.ijleo.2020.164534

    Article  ADS  Google Scholar 

  27. D. Bokov, A.T. Jalil, S. Chupradit, W. Suksatan, M.J. Ansari, I.H. Shewael, E. Kianfar, Nanomaterial by sol-gel method: synthesis and application. Adv. Mater. Sci. Eng. 2021, 1–21 (2021). https://doi.org/10.1155/2021/5102014

    Article  Google Scholar 

  28. O. Garcia-Martinez, R.M. Rojas, E. Vila, J.M. De Vidales, Microstructural characterization of nanocrystals of ZnO and CuO obtained from basic salts. Solid State Ion 63, 442–449 (1993). https://doi.org/10.1016/0167-2738(93)90142-P

    Article  Google Scholar 

  29. R. Sagheer, M. Khalil, V. Abbas, Z.N. Kayani, U. Tariq, F. Ashraf, Effect of Mg doping on structural, morphological, optical and thermal properties of ZnO nanoparticles. Optik 200, 163428 (2020). https://doi.org/10.1016/j.ijleo.2019.163428

    Article  ADS  Google Scholar 

  30. S. Fabbiyola, L.J. Kennedy, A.A. Dakhel, M. Bououdina, J.J. Vijaya, T. Ratnaji, Structural, microstructural, optical and magnetic properties of Mn-doped ZnO nanostructures. J. Mol. Struct. 1109, 89–96 (2016). https://doi.org/10.1016/j.molstruc.2015.12.071

    Article  ADS  Google Scholar 

  31. S. Ayaz, P. Mishra, S. Sen, Structure correlated optoelectronic and electrochemical properties of Al/Li modified ZnO. J. Appl. Phys. 126(2), 024302 (2019). https://doi.org/10.1063/1.5099894

    Article  ADS  Google Scholar 

  32. N. Kumar, S. Azad, S. Chand, Fabrication and electrical characterization of solution processed Ni/MgO/p-Si/Al MIS diodes. Appl. Phys. A 128(3), 1–10 (2022). https://doi.org/10.1007/s00339-022-05378-3

    Article  Google Scholar 

  33. Y. Caglar, M. Caglar, S. Ilican, Microstructural, optical and electrical studies on sol gel derived ZnO and ZnO: Al films. Curr. Appl. Phys. 12(3), 963–968 (2012). https://doi.org/10.1016/j.cap.2011.12.017

    Article  ADS  Google Scholar 

  34. J.H. Lee, B.O. Park, Transparent conducting ZnO: Al, In and Sn thin films deposited by the sol–gel method. Thin Solid Films 426(1–2), 94–99 (2003). https://doi.org/10.1016/S0040-6090(03)00014-2

    Article  ADS  Google Scholar 

  35. J.S. Jang, J. Kim, U. Ghorpade, H.H. Shin, M.G. Gang, S.D. Park, J.H. Kim, Comparison study of ZnO-based quaternary TCO materials for photovoltaic application. J. Alloys Compd. 793, 499–504 (2019). https://doi.org/10.1016/j.jallcom.2019.04.042

    Article  Google Scholar 

  36. S. Azad, N. Kumar, S. Chand, Effect of Mg2+ ions substitution on phase formation, structural, morphological, and optical properties of Zn0.1xMgxO structure. J. Mater. Sci. 33, 861–871 (2021). https://doi.org/10.1007/s10854-021-07356-6

    Article  Google Scholar 

  37. J. Hu, R.G. Gordon, Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition. J. Appl. Phys. 71(2), 880–890 (1992). https://doi.org/10.1063/1.351309

    Article  ADS  Google Scholar 

  38. A. López-Suárez, D. Acosta, C. Magaña, F. Hernández, Optical, structural and electrical properties of ZnO thin films doped with Mn. J. Mater. Sci. 31, 7389–7397 (2020). https://doi.org/10.1007/s10854-019-02830-8

    Article  Google Scholar 

  39. T.H. Kim, J.J. Park, S.H. Nam, H.S. Park, N.R. Cheong, J.K. Song, S.M. Park, Fabrication of Mg-doped ZnO thin films by laser ablation of Zn: Mg target. Appl. Surf. Sci. 255(10), 5264–5266 (2009). https://doi.org/10.1016/j.apsusc.2008.07.105

    Article  ADS  Google Scholar 

  40. B.S. Patial, S. Chand, N. Thakur, On high-field conduction and I-V measurements in quaternary Se–Te–In–Pb nano-chalcogenide thin films. J. Mater. Sci. 31(4), 2741–2756 (2020). https://doi.org/10.1007/s10854-019-02814-8

    Article  Google Scholar 

  41. S. Vipul, P.D. Amit, Effect of doping concentration on optical and electrical properties of intrinsic n-type ZnO (i-ZnO) and (Cu, Na and K) doped p-type ZnO thin films grown by chemical bath deposition method. Nanosyst. Phys. Chem. Math. 11(4), 391–400 (2020). https://doi.org/10.17586/2220-8054-2020-11-4-391-400

    Article  Google Scholar 

  42. N. Kılınç, L. Arda, S. Öztürk, Z.Z. Öztürk, Structure and electrical properties of Mg-doped ZnO nanoparticles. Cryst. Res. Technol. 45(5), 529–538 (2010). https://doi.org/10.1002/crat.200900662

    Article  Google Scholar 

  43. R. Dingle, Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide. Phys. Rev. Lett. 23(11), 579 (1969). https://doi.org/10.1103/PhysRevLett.23.579

    Article  ADS  Google Scholar 

  44. J.Y. Cho, I.K. Kim, I.O. Jung, J.H. Moon, J.H. Kim, Effects of Mg doping concentration on the band gap of ZnO/Mg x Zn 1–x O multilayer thin films prepared using pulsed laser deposition method. J. Electroceram. 23(2–4), 442 (2009). https://doi.org/10.1007/s10832-008-9485-3

    Article  Google Scholar 

  45. Y. Ammaih, A. Lfakir, B. Hartiti, A. Ridah, P. Thevenin, M. Siadat, Structural, optical and electrical properties of ZnO: Al thin films for optoelectronic applications. Opt. Quantum Electron. 46(1), 229–234 (2014). https://doi.org/10.1007/s11082-013-9757-2

    Article  Google Scholar 

  46. K.S. An, W. Cho, B.K. Lee, S.S. Lee, C.G. Kim, Atomic layer deposition of undoped and Al-doped ZnO thin films using the Zn alkoxide precursor methyl zinc isopropoxide. J. Nanosci. Nanotechnol. 8(9), 4856–4859 (2008). https://doi.org/10.1166/jnn.2008.IC47

    Article  Google Scholar 

  47. M.C. Jun, S.U. Park, J.H. Koh, Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films. Nanoscale Res. Lett. 7(1), 1–6 (2012). https://doi.org/10.1186/1556-276X-7-639

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank NIT Hamirpur for providing research fellowship funded by MHRD, Government of India.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Seema: methodology, experimental work, data analysis, writing-original draft and investigation. SC: supervision, conceptualization, writing-review and editing, validation.

Corresponding author

Correspondence to Seema Azad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. There is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azad, S., Chand, S. Synthesis and characterization of doped-ZnO thin films over wide temperature range for applications as a transparent conducting material. Appl. Phys. A 129, 686 (2023). https://doi.org/10.1007/s00339-023-06973-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06973-8

Keywords

Navigation