Skip to main content
Log in

Unveiling the luminescent brilliance of europium-sourced cerium oxide: a comprehensive exploration for biomedical advancements through in vitro and in vivo studies

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present investigation focuses on the synthesis and characterization of Ce1−xEuxO2 (X = 0, 0.02, 0.04, 0.06, and 0.08) materials. The Eu-doped CeO2 compounds were prepared using the chemical precipitation method. Powder X-ray diffraction (XRD) analysis confirmed the phase-pure Cubic structured CeO2 crystal system. Structural examination of the synthesized materials was conducted through the Rietveld refinement approach. Scanning electron microscopy (SEM) along with energy dispersive spectroscopy (EDS) was employed to evaluate surface morphology and elemental composition (EDAX) of the materials. FTIR spectroscopy revealed the presence of vibrational linkages associated with distinct functional groups. The energy gap of the synthetic materials was investigated using UV–Vis spectroscopy. Photoluminescence (PL) analysis demonstrated the luminescence activity of the manufactured materials, which emitted light-green fluorescence at approximately 516 nm upon excitation at a wavelength of 380 nm. Moreover, the electron density distribution in the fabricated materials was successfully determined. The highest covalent nature of the Ce–O bond and single unit cells were observed in the 4% Eu-substituted CeO2. Antibacterial activity of the synthetic materials was tested against Aeromonas hydrophila and Streptococcus pyogenes. Additionally, a hemolysis inquiry was conducted to assess the breakdown of human red blood cells. Based on all experimental findings, it was observed that the CeO2 host lattice showed optimal characteristics at 4% Eu dopant concentration. This work offers a promising avenue for the development of effective materials for various biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data will be made available on reasonable request.

References

  1. A. Muthuvel et al., Microwave-assisted green synthesis of nanoscaled titanium oxide: photocatalyst, antibacterial and antioxidant properties. J. Mater. Sci. Mater. Electron. 32, 23522–23539 (2021)

    Article  Google Scholar 

  2. N. Al-Zaqri et al., Green synthesis of nickel oxide nanoparticles and its photocatalytic degradation and antibacterial activity. J. Mater. Sci. Mater. Electron. 33, 11864–11880 (2022)

    Article  Google Scholar 

  3. L. Jintong et al., Homologous metal–organic framework hybrid as tandem catalyst for enhanced therapy against hypoxic tumor cells. Angew. Chem. 131, 7890–7894 (2019)

    Article  Google Scholar 

  4. R. Javed et al., Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J. Nanobiotechnol. 18, 172 (2020)

    Article  Google Scholar 

  5. A.S. Fauci, D.M. Morens, The perpetual challenge of infectious diseases. N. Engl. J. Med. 366, 454–461 (2012). https://doi.org/10.1056/nejmra1108296

    Article  Google Scholar 

  6. O. Aisida et al., Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. Eur. Polym. J. (2020). https://doi.org/10.1016/j.eurpolymj.2019.109371

    Article  Google Scholar 

  7. R. Gaynes, The discovery of penicillin—new insights after more than 75 years of clinical use. Emerg. Infect. Dis. 23, 849–853 (2017). https://doi.org/10.3201/eid2305.161556

    Article  Google Scholar 

  8. A. Nigam, D. Gupta, A. Sharma, Treatment of infectious disease: beyond antibiotics. Microbiol. Res. 169, 643–651 (2014). https://doi.org/10.1016/j.micres.2014.02.009

    Article  Google Scholar 

  9. V.M. D’Costa, C.E. King, L. Kalan, M. Morar, W.W.L. Sung, C. Schwarz et al., Antibiotic resistance is ancient. Nature 477, 457–461 (2011). https://doi.org/10.1038/nature10388

    Article  ADS  Google Scholar 

  10. M. Frieri, K. Kumar, A. Boutin, Antibiotic resistance. J. Infect. Public Health 10, 369–378 (2017). https://doi.org/10.1016/j.jiph.2016.08.007

    Article  Google Scholar 

  11. L.R. Khot, S. Sankaran, J.M. Maja, R. Ehsani, E.W. Schuster, Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot. 35, 64–70 (2012). https://doi.org/10.1016/j.cropro.2012.01.007

    Article  Google Scholar 

  12. S. Das, B. Sen, N. Debnath, Recent trends in nanomaterials applications in environmental monitoring and remediation. Environ. Sci. Pollut. Res. 22, 18333–18344 (2015). https://doi.org/10.1007/s11356-015-5491-6

    Article  Google Scholar 

  13. K. Scida, P.W. Stege, G. Haby, G.A. Messina, C.D. García, Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. Anal. Chim. Acta 691, 6–17 (2011). https://doi.org/10.1016/j.aca.2011.02.025

    Article  Google Scholar 

  14. S. Chaudhary, S.K. Mehta, Selenium nanomaterials: applications in electronics, catalysis and sensors. J. Nanosci. Nanotechnol. 14, 1658–1674 (2014). https://doi.org/10.1166/jnn.2014.9128

    Article  Google Scholar 

  15. S. Mitragotri, D.G. Anderson, X. Chen, E.K. Chow, D. Ho, A.V. Kabanov et al., Accelerating the translation of nanomaterials in biomedicine. ACS Nano 9, 6644–6654 (2015). https://doi.org/10.1021/acsnano.5b03569

    Article  Google Scholar 

  16. G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli et al., Silver nanoparticles as potential antibacterial agents. Molecules 20, 8856–8874 (2015). https://doi.org/10.3390/molecules20058856

    Article  Google Scholar 

  17. Y. Rodhe, S. Skoglund, I. OdnevallWallinder, Z. Potácová, L. Möller, Copper based nanoparticles induce high toxicity in leukemic HL60 cells. Toxicol. Vitro 29, 1711–1719 (2015). https://doi.org/10.1016/j.tiv.2015.05.020

    Article  Google Scholar 

  18. A. Ivask, K. Juganson, O. Bondarenko, M. Mortimer, V. Aruoja, K. Kasemets et al., Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review. Nanotoxicology 8, 57–71 (2014). https://doi.org/10.3109/17435390.2013.855831

    Article  Google Scholar 

  19. G. Kamarajan et al., Green synthesis of ZnO nanoparticles using Acalypha indica leaf extract and their photocatalyst degradation and antibacterial activity. J. Indian Chem. Soc. 99, 100695 (2022)

    Article  Google Scholar 

  20. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori et al., Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. NanoMicro Lett. 7, 219–242 (2015). https://doi.org/10.1007/s40820-015-0040-x

    Article  Google Scholar 

  21. A. ÁvalosFúnez, A. Isabel Haza, D. Mateo, P. Morales, In vitro evaluation of silver nanoparticles on human tumoral and normal cells. Toxicol. Mech. Method 23, 153–160 (2013). https://doi.org/10.3109/15376516.2012.762081

    Article  Google Scholar 

  22. M. Mogensen, N. Sammes, G. Tompsett, Solid State Ion. 129, 63 (2000)

    Article  Google Scholar 

  23. S. Tsunekawa, T. Fukuda, A.J. Kasuya, Appl. Phys. 87, 1318 (2000)

    Article  Google Scholar 

  24. X. Feng, D. Sayle, Z. Wang, M. Paras, B. Santora, A. Sutorik, T. Sayle, Y. Yang, Y. Ding, X. Wang, Y. Her, Science 312, 1504 (2006)

    Article  ADS  Google Scholar 

  25. S. Patil, S. Reshetnikov, M. Haldar, S.J. Seal, Phys. Chem. C 111, 8437 (2007)

    Article  Google Scholar 

  26. L. Li, J. Tao, H. Pan, H. Chen, X. Wu, F. Zhu, X. Xu, R.J. Tang, Mater. Chem. 18, 5363 (2008)

    Article  Google Scholar 

  27. X. Wen, M. Li, Y. Wang, J. Zhang, L. Fu, R. Hao, Y. Ma, X. Ai, Langmuir 24, 6932 (2008)

    Article  Google Scholar 

  28. I. Hemmila, V.M. Mukkala, H.J. Takalo, Alloys Compd. 249, 158 (1997)

    Article  Google Scholar 

  29. J. Wu, G.L. Wang, D.Y. Jin, J.L. Yuan, Y.F. Guan, J. Piper, Chem. Commun. 3, 365 (2008)

    Article  Google Scholar 

  30. A. Kumar, S. babu, A. Karaoti, A. Schulte, S. Seal, Langmuir. 25(18), 10998–11007 (2009). https://doi.org/10.1021/la901298q

  31. D. Das, S.K. Gupta, K. Sudarshan, Europium luminescence as a structural probe to understand defect evolution in CeO2/Eu3+, M3+ (M = Y and La): contrasting role of codopant ionic size. J. Mater. Sci. 56, 17205–17220 (2021). https://doi.org/10.1007/s10853-021-06366-3

    Article  ADS  Google Scholar 

  32. C. Secu, C. Bartha, E. Matei, C. Radu, M. Secu, Structural and optical characterization of silica nanospheres embedded with monodisperse CeO2-Eu3+ nanocrystals. Magnetochemistry 8, 22 (2022). https://doi.org/10.3390/magnetochemistry8020022

    Article  Google Scholar 

  33. R. Zhou, Y. Ren, Q. Lu, N. Mahinpey, Microwave-assisted hydrothermal synthesis of Ru/Ceo2 catalyst for efficient and stable low-temperature dry reforming of methane. SSRN J. (2022). https://doi.org/10.2139/ssrn.4189620

    Article  Google Scholar 

  34. A.E. D’Achille, Morphology-dependent fluorescence of europium-doped cerium oxide nanomaterials. Nanoscale Adv. 3, 3563–3572 (2021). https://doi.org/10.1039/D1NA00096A

    Article  ADS  Google Scholar 

  35. W.Y. Hernández, O.H. Laguna, M.A. Centeno, J.A. Odriozola, Structural and catalytic properties of lanthanide (La, Eu, Gd) doped ceria. J. Solid State Chem. 184(11), 3014–3020 (2011). https://doi.org/10.1016/j.jssc.2011.09.018. (ISSN 0022-4596)

    Article  ADS  Google Scholar 

  36. S.K. Samdarshi, A.K. Agrawal, S. Chauhan et al., Oxygen vacancies induce changes in lattice parameter, photoluminescence characteristics and Raman spectra of sol–gel derived fluorite-type cubic CeO2 and Ce0.8ZrO2−xAxO2 (A = Co/Fe, x = 0–02) powders. Appl. Phys. A 128, 712 (2022). https://doi.org/10.1007/s00339-022-05860-y

    Article  ADS  Google Scholar 

  37. K. Zamani, N. Allah-Bakhshi, F. Akhavan et al., Antibacterial effect of cerium oxide nanoparticle against Pseudomonas aeruginosa. BMC Biotechnol. 21, 68 (2021). https://doi.org/10.1186/s12896-021-00727-1

    Article  Google Scholar 

  38. K. Vignesh, D. Sivaganesh, S. Saravanakumar, M. Prema Rani, Ho3+ induced ZnO: structural, electron density distribution and antibacterial activity for biomedical application. Appl. Biochem. Biotechnol. (2022). https://doi.org/10.1007/s12010-022-03865-0

    Article  Google Scholar 

  39. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978 (1939)

    Article  ADS  MATH  Google Scholar 

  40. W.M. Mohammed, T.H. Mubark, R.M.S. Al-Haddad, Effect of CuO Nanoparticles on Antimicrobial Activity Prepared by Sol-Gel Method. Int. J. Appl. Eng. Res. 13(12), 10559–10562 (2018) © Research India Publications. http://www.ripublication.com(ISSN 0973-4562)

  41. S. Mahalakshmi, V. Vishnu, K. Jamuna, G. Kurian Physiochemical investigation and biovaluation of TiO2 nanocrystals synthesized by chemical and green route. Int. J. Pharm. Pharm. Sci. 6(11) 396-400 (2014)

  42. M.S. Hassan, T. Amna, O.-B. Yang, M.H. El-Newehy, S.S. Al-Deyab, M.-S. Khil, Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity. Colloids Surf. B Biointerfaces 97, 201–206 (2012). https://doi.org/10.1016/j.colsurfb.2012.04.032

    Article  Google Scholar 

  43. K. Vignesh, D. Sivaganesh, S. Saravanakumar, M. PremaRani, Synthesis and characterisation of yittrium doped cerium oxide nanoparticles and their efficient antibacterial application invitro against gram-positive and gram-negative pathogens. J. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.05.178

    Article  Google Scholar 

  44. V. Petrícek, M. Dušek, L. Palatinus, Crystallographic computing system JANA2006: general features. Zeitschrift fur Krist. 229(5), 345 (2014)

    Google Scholar 

  45. W.S. Rasband, ImageJ (U. S. National Institutes of Health, Bethesda, Maryland, USA, 1997–2018). https://imagej.nih.gov/ij/ February 29, 2016

  46. G. Killivalavan, B. Sathyaseelan, G. Kavitha, I. Baskarann, K. Senthilnathan, D. Sivakumar, N. Karthikeyan, E. Manikandan, M. Maaza, Cobalt metal ion doped cerium oxide (Co-CeO2) nanoparticles effect enhanced photocatalytic activity. MRS Adv. (2020). https://doi.org/10.1557/adv.2020.296

    Article  Google Scholar 

  47. A.R. Abhijith, A.K. Srivastava, A. Srivastava, Synthesis and characterization of magnesium doped ZnO using chemical route. J. Phys. Conf. Ser. 1531, 012005 (2020). https://doi.org/10.1088/1742-6596/1531/1/012005

    Article  Google Scholar 

  48. G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer, R.T. Williams, Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Phys. Status Solidi (c) 3, 3577–3581 (2006). https://doi.org/10.1002/pssc.200672164

    Article  ADS  Google Scholar 

  49. N. Shanmugam et al., Luminance behavior of Ce3+ doped ZnS nanostructures. Spectrochim. Acta Part A 118, 557–563 (2014)

    Article  ADS  Google Scholar 

  50. B. Abebe, E.A. Zereffa, A. Tadesse et al., A review on enhancing the antibacterial activity of ZnO: mechanisms and microscopic investigation. Nanoscale Res. Lett. 15, 190 (2020). https://doi.org/10.1186/s11671-020-03418-6

    Article  ADS  Google Scholar 

  51. T.U.D. Thi, T.T. Nguyen et al., Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Adv. (2020). https://doi.org/10.1039/D0RA04926C

    Article  Google Scholar 

  52. C.R. Mendes, G. Dilarri, C.F. Forsan et al., Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci. Rep. 12, 2658 (2022). https://doi.org/10.1038/s41598-022-06657-y

    Article  ADS  Google Scholar 

  53. S. MoniriJavadhesari, S. Alipour, S. Mohammadnejad, M.R. Akbarpour, Antibacterial activity of ultra-small copper oxide(II) nanoparticles synthesized by mechanochemical processing against S. aureus and E. coli. Mater. Sci. Eng. C (2019). https://doi.org/10.1016/j.msec.2019.110011

    Article  Google Scholar 

  54. K.S. Khashan, G.M. Sulaiman, F.A. Abdulameer, S. Albukhaty, M.A. Ibrahem, T. Al-Muhimeed, A.A. AlObaid, Antibacterial activity of TiO2 nanoparticles prepared by one-step laser ablation in liquid. Appl. Sci. 11(10), 4623 (2021). https://doi.org/10.3390/app11104623

    Article  Google Scholar 

  55. H.T. Bui, S. Weon, J.W. Bae, E.-J. Kim, B. Kim, Y.-Y. Ahn, W. Kim, Oxygen vacancy engineering of cerium oxide for the selective photocatalytic oxidation of aromatic pollutants. J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2020.123976

    Article  Google Scholar 

  56. J. Xu, C. Zhang, Oxygen vacancy engineering on cerium oxide nanowires for room-temperature linalool detection in rice aging. J Adv Ceram 11, 1559–1570 (2022). https://doi.org/10.1007/s40145-022-0629-8

    Article  Google Scholar 

  57. A. Kumar, S. Babu, A.S. Karakoti, A. Schulte, S. Seal, Luminescence properties of europium-doped cerium oxide nanoparticles: role of vacancy and oxidation states. Langmuir 25(18), 10998–11007 (2009). https://doi.org/10.1021/la901298q

    Article  Google Scholar 

  58. Langmuir. 25(18), 10998–11007, (2009). https://doi.org/10.1021/la901298q

  59. Y.-H. Peng, C.-C. He, Y.-J. Zhao, X.-B. Yang, J. Appl. Phys. 133(7), 075702 (2023). https://doi.org/10.1063/5.0135162

    Article  Google Scholar 

  60. R. Li, L. Liu, B. Ming, Y. Ji, R. Wang, Oxygen vacancy effect on photoluminescence of KNb3O8 nanosheets. Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2017.12.218

    Article  Google Scholar 

  61. J.W. Kim, N.S. Covel, P.C. Guess, E.D. Rekow, Y. Zhang, J. Dent. Res. 89, 91–95 (2010)

    Article  Google Scholar 

  62. F. Izumi, R.A. Dilanian, Recent Research Developments in Physics Part II, vol. 3 (Transworld Research Network, Trivandrum, 2002)

    Google Scholar 

  63. K. Momma, T. Ikeda, A.A. Belik and F. Izumi, "Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting." Powder Diffraction, 28, 184-193 (2013).

  64. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011)

    Article  Google Scholar 

  65. G. Leelaprakash, S. Mohan, Invitro anti-inflammatory activity of methanol extract of Enicostemma axillare. Int. J. Drug Dev. Res. 3(3), 189–196 (2011)

    Google Scholar 

Download references

Acknowledgements

The Madura College in Madurai, Tamil Nadu, and Kalasalingam Academy of Research and Education (KARE), which provided the PXRD, SEM, and EDAX analyses, are acknowledged by the authors for their support of the research. One of the authors, D. Sivaganesh thanks the Ministry of Science and Higher Education of the Russian Federation for support (Ural Federal University Program of Development within the Priority-2030 Program, project. 4.38).

Funding

None applicable.

Author information

Authors and Affiliations

Authors

Contributions

Writing—preparation of the initial draft: [KV]; resources: [KV]; writing—review and editing: [DS], supervision: [MPR]; conceptualization: [KV]; methodology: [KV]; formal analysis and investigation: [KV]; writing—original draft preparation: [KV]: review question: [VK].

Corresponding author

Correspondence to K. Vignesh.

Ethics declarations

Participation agreement

Not applicable.

Moral verification

The authors of this paper adhered to all of their ethical obligations.

Divergent interests

In this paper, there are no opposing viewpoints.

Data and resources are readily available

The corresponding author can provide, upon justifiable request, the datasets created during and/or analyzed during the current work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignesh, K., Sivaganesh, D., Kavitha, V. et al. Unveiling the luminescent brilliance of europium-sourced cerium oxide: a comprehensive exploration for biomedical advancements through in vitro and in vivo studies. Appl. Phys. A 129, 703 (2023). https://doi.org/10.1007/s00339-023-06957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06957-8

Keywords

Navigation