Skip to main content
Log in

Electrical properties of Pb(Ni1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics sintered in different atmospheres

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pb(Ni1/3Nb2/3)O3–Pb(Zr,Ti)O3 (PNNZT) ceramics were sintered in different atmospheres (O2, N2 and air) and the effects of different sintering atmospheres on dielectric, ferroelectric and piezoelectric properties of PNNZT ceramics were investigated. The results showed that sintering atmospheres influence the properties of PNNZT ceramics markedly. PNNZT ceramics sintered in O2 showed the best piezoelectric properties, while PNNZT ceramics sintered in N2 showed the lowest piezoelectric properties but with good temperature stability. Diffuseness of phase transition and ferroelectric properties are also slightly changed for Pb(Ni1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics sintered in different atmospheres. The difference in electrical properties for PNNZT ceramics sintered in different atmospheres may be attributed to different vacancy defect types in these ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. E.F. Alberta, A.S. Bhalla, Low-temperature properties of lead nickel niobate ceramics. Mater. Lett. 54(1), 47–54 (2002)

    Article  Google Scholar 

  2. M.S. Yoon, H.M. Jang, Relaxor-normal ferroelectric transition in tetragonal-rich field of Pb(Ni1/3Nb2/3)O3-PbTiO3-PbZrO3 system. J. Appl. Phys. 77(8), 3991–4001 (1995)

    Article  ADS  Google Scholar 

  3. J. Du, J. Qiu, K. Zhu et al., Microstructure, temperature stability and electrical properties of ZnO-modified Pb(Ni1/3Nb2/3)O3–Pb(Fe1/2Nb1/2)O3–Pb(Zr0.3Ti0.7)O3 piezoelectric ceramics. Ceram Int. 39(8), 9385–9390 (2013)

    Article  Google Scholar 

  4. H.J. Fan, M.H. Kuok, S.C. Ng et al., ‘Brillouin and dielectric studies of the phase transition in the relaxor ferroelectric Pb(Ni1/3Nb2/3)O3. J. Appl. Phys. 91(4), 2262–2266 (2002)

    Article  ADS  Google Scholar 

  5. F. Levassort, P. Tran-Huu-Hue, E. Ringaard et al., High-frequency and high-temperature electromechnical performance of new PZT-PNN piezoceramics. J. Euro. Ceram. Soc. 21(10–11), 1361–1365 (2001)

    Article  Google Scholar 

  6. R. Cao, G. Li, J. Zeng et al., The Piezoelectric and dielectric properties of 0.3Pb(Ni1/3Nb2/3)O3–xPbTiO3– (0.7–x)PbZrO3 ferroelectric ceramics near the morphotropic phase boundary. J. Am. Ceram. Soc. 93(3), 737–741 (2010)

    Article  Google Scholar 

  7. S. Wirunchit, P. Laoratanakul, N. Vittayakorn, Physical properties and phase transitions in perovskite Pb[Zr1-x(Ni1/3Nb2/3)x]O3 (0.0<x<0.5) ceramics. J. Phys. D Appl. Phys. 41(12), 125406 (2008)

    Article  ADS  Google Scholar 

  8. T. Bove, W. Wolny, E. Ringgaard et al., New piezoceramic PZT–PNN material for medical diagnostics applications. J. Euro. Ceram. Soc. 21(10–11), 1469–1472 (2001)

    Article  Google Scholar 

  9. K. Kurihara, M. Kondo, High-strain piezoelectric ceramics and applications to actuators. Ceram. Int. 34(4), 695–699 (2008)

    Article  Google Scholar 

  10. M. Kang, L.H. Kang, Piezoelectric characteristics of 0.55Pb(Ni1/3Nb2/3)O3 - 0.45Pb(Zr,Ti)O3 ceramics with different MnO2 concentrations for ultrasound transducer applications. Materials. 12(24), 4115 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Nie, Q. Zhang, Y. Yue et al., Phase structure–electrical property relationships in Pb(Ni1/3Nb2/3)O3–Pb(Zr, Ti)O3-based ceramics. J. Appl. Phys. 119(12), 124111 (2016)

    Article  ADS  Google Scholar 

  12. X. Gao, H. Jin, B. Xin et al., Low temperature sintering of Li2CO3 added Pb(Ni1/3Nb2/3)-Pb(Zr, Ti)O3 ceramics with high piezoelectric properties. J. Alloys Compd. 892, 162132–162138 (2022)

    Article  Google Scholar 

  13. Y. Zhang, H. Liu, S. Sun et al., High Piezoelectric Performance in Pb(Ni1/3Nb2/3)O3-Pb(Sc1/2Nb1/2)O3-PbTiO3 ternary system featuring small structural distortion and heterogeneous domain configuration. ACS Appl. Mater. Interfaces 14(11), 13528–13538 (2022)

    Article  Google Scholar 

  14. S.-I. Kang, J.-H. Lee, J.-J. Kim et al., Effect of sintering atmosphere on densification and dielectric characteristics in Sr0.5Ba0.5Nb2O6 ceramics. J. Euro. Ceram. Soc. 24(6), 1031–1035 (2004)

    Article  Google Scholar 

  15. A. Tkach, P.M. Vilarinho, A.L. Kholkin, Dependence of dielectric properties of manganese-doped strontium titanate ceramics on sintering atmosphere. Acta Mater. 54(20), 5385–5391 (2006)

    Article  ADS  Google Scholar 

  16. C. Mao, S. Cao, C. Yao et al., Effect of sintering atmosphere on the microstructure and electrical properties of donor-doped barium strontium calcium titanate pyroelectric ceramics. J. Am. Ceram. Soc. 94(7), 2003–2006 (2011)

    Article  Google Scholar 

  17. S. Zhang, C. Stringer, R. Xia et al., Investigation of bismuth-based perovskite system: (1–x)Bi(Ni2/3Nb1/3)O3–xPbTiO3. J. Appl. Phys. 98, 034103 (2005)

    Article  ADS  Google Scholar 

  18. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectr. Lett. Sect. 44, 55–61 (1982)

    Article  ADS  Google Scholar 

  19. X. Chen, J. Wang, H. Ma et al., Effect of an oxygen treatment on the structure and dielectric property of BiFeO3-doped Na0.47Bi0.47Ba0.06TiO3 lead-free ceramics. J. Ceram. Process. Res. 13(4), 495–499 (2012)

    Google Scholar 

  20. J. Babu, G. Madeswaran, X.L. Chen et al., Effect of oxygen vacancies on ferroelectric behavior of Na1/2Bi1/2TiO3–BaTiO3 single crystals. Mat. Sci. Eng. B 156(1–3), 36–41 (2009)

    Article  Google Scholar 

  21. D.J. Keeble, S. Singh, R.A. Mackie et al., Cation vacancies in ferroelectric PbTiO3 and Pb(Zr, Ti)O3: a positron annihilation lifetime spectroscopy study. Phys. Rev. B 76, 144109 (2007)

    Article  ADS  Google Scholar 

  22. E. Cockayne, B.P. Burton, Dipole moment of a Pb-O vacancy pair in PbTiO3. Phys. Rev. B 69, 144116 (2004)

    Article  ADS  Google Scholar 

  23. J. Tian, P. Han, X. Huang et al., Improved stability for piezoelectric crystals grown in the lead indium niobate–lead magnesium niobate–lead titanate system. Appl. Phys. Lett. 91, 222903 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was jointly supported by the Zhangjiang National Independent Innovation of Shanghai (Grant No. 202205-HK-E06-030), International Science & Technology Cooperation Project of Shanghai (Grant No. 22520730200), Technology Innovation Project of Shanghai Research Institute of Materials(Grant No. 23SG-10) and Science & Technology Project supported by Guilin (Grant No. 2022H03).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, formal analysis: YZ; data curation, writing—original draft preparation: XX; visualization, investigation: SW; resources: GD; software, validation: LW; supervision, writing—reviewing and editing: JZ.

Corresponding author

Correspondence to Jiangtao Zeng.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, X., Wang, S. et al. Electrical properties of Pb(Ni1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics sintered in different atmospheres. Appl. Phys. A 129, 657 (2023). https://doi.org/10.1007/s00339-023-06948-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06948-9

Keywords

Navigation