Skip to main content
Log in

Li and Na metal ion-induced defects in CuO nanocrystallites studied by positron annihilation spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Alkali metal ion (Li+ and Na+)-doped CuO nanocrystallites were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), positron annihilation lifetime (PAL), and Doppler broadening annihilation radiation (DBAR) spectroscopy methods. A comparative analysis of XRD, TEM, average lifetime, and electron momentum variation is presented based on defect formation and curing. DBAR studies divulge the positron trapping sites as Cu vacancies and vacancy complex clusters in undoped CuO. The study also reveals lattice defect and migration of point defect in the doped CuO lattice. The positron lifetimes of undoped CuO show extended point defects, VCuVO vacancy complexes, and voids. These defects are reduced to Cu interstitial (Cui) type point defects upon annealing. The lifetime confirms the VCu recovery and cluster vacancies for annealed Li- and Na-doped CuO. Higher Li concentrations showed a significant point defect of isolated oxygen vacancies as well as Li interstitials. Antisite and oxygen interstitial-type defects are prominent for all the Na concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting this study's findings are available from the corresponding author [S. Sellaiyan], upon reasonable request.

References

  1. T.H. Tran, V.T. Nguyen, International Scholarly Research Notices 2014 (2014)

  2. Z.C. Feng, Handbook of zinc oxide and related materials: volume two, devices and nano-engineering (CRC Press, Boca Raton, 2023)

    Google Scholar 

  3. R. J. Tilley, Defects in solids. (John Wiley & Sons, 2008)

  4. K. Kim, J. Yu, J. Noh, L.C. Reimnitz, M. Chang, D.R. Gamelin, B.A. Korgel, G.S. Hwang, D.J. Milliron, J. Am. Chem. Soc. 144, 22941–22949 (2022)

    Google Scholar 

  5. A.I.A. Elsharawy, S.M. Yakout, M.A. Wahba, A.A. Abdel-Shafi, M.S. Khalil, Solid State Sci. 139, 107166 (2023)

    Google Scholar 

  6. T. Makino, K. Tamura, C. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, H. Koinuma, Phys. Rev. B 65(12), 121201 (2002)

    ADS  Google Scholar 

  7. N. Yoshida, T. Naito, H. Fujishiro, Jpn. J. Appl. Phys. 52, 031102 (2013)

    ADS  Google Scholar 

  8. N. Kumar, D. Sanyal, A. Sundaresan, Chem. Phys. Lett. 477(4), 360–364 (2009)

    ADS  Google Scholar 

  9. C.-T. Hsieh, J.-M. Chen, H.-H. Lin, H.-C. Shih, Appl. Phys. Lett. 83(16), 3383–3385 (2003)

    ADS  Google Scholar 

  10. Q. Xin, A. Papavasiliou, N. Boukos, A. Glisenti, J.P.H. Li, Y. Yang, C.J. Philippopoulos, E. Poulakis, F.K. Katsaros, V. Meynen, P. Cool, Appl. Catal. B 223, 103–115 (2018)

    Google Scholar 

  11. M. Bibi, Q.-U.-A. Javed, H. Abbas, S. Baqi, Mater. Chem. Phys. 192, 67–71 (2017)

    Google Scholar 

  12. S. Sonia, I.J. Annsi, P.S. Kumar, D. Mangalaraj, C. Viswanathan, N. Ponpandian, Mater. Lett. 144, 127–130 (2015)

    Google Scholar 

  13. A. Yildiz, Ş Horzum, N. Serin, T. Serin, Appl. Surf. Sci. 318, 105–107 (2014)

    ADS  Google Scholar 

  14. L.V. Devi, S. Sellaiyan, S. Sankar, K. Sivaji, Mater. Res. Express 5(2), 024002 (2018)

    ADS  Google Scholar 

  15. L. Vimala Devi, T. Selvalakshmi, S. Sellaiyan, P. SahayaMurphin Kumar, S. Sankar, J. Mater. Sci. Mater. Electron. 29, 9387–9396 (2018)

    Google Scholar 

  16. A.A. Gvozdenko, S.A. Siddiqui, A.V. Blinov, A.B. Golik, A.A. Nagdalian, D.G. Maglakelidze, E.N. Statsenko, M.A. Pirogov, A.A. Blinova, M.N. Sizonenko, A.N. Simonov, R.B. Zhukov, R.O. Kolesnikov, S.A. Ibrahim, Sci. Rep. 12, 12843 (2022)

    ADS  Google Scholar 

  17. S.J. Singh, P. Chinnamuthu, Colloids Surf. A 625, 126864 (2021)

    Google Scholar 

  18. A. Hezam, K. Namratha, D. Ponnamma, Q. Drmosh, A.M.N. Saeed, K.K. Sadasivuni, K. Byrappa, ACS Omega 4(24), 20595–20605 (2019)

    Google Scholar 

  19. J. Sivasankari, S. Sankar, S. Selvakumar, L. Vimaladevi, R. Krithiga, Mater. Chem. Phys. 143, 1528–1535 (2014)

    Google Scholar 

  20. L.V. Devi, T. Selvalakshmi, S. Sellaiyan, A. Uedono, K. Sivaji, S. Sankar, J. Alloy, Compd 709, 496–504 (2017)

    Google Scholar 

  21. S. Sellaiyan, A. Uedono, K. Sivaji, S. Janet Priscilla, J. Sivasankari, T. Selvalakshmi, Appl. Phys. A 122, 920 (2016)

    ADS  Google Scholar 

  22. M.J. Puska, R.M. Nieminen, Rev. Mod. Phys. 66, 841–897 (1994)

    ADS  Google Scholar 

  23. P.J. Schultz, K.G. Lynn, Rev. Mod. Phys. 60, 701–779 (1988)

    ADS  Google Scholar 

  24. M. M. Eldrup, P. Sanders, J. Weertman, Presented at the Materials Science Forum, p. 633679 (1997)

  25. K. Saarinen, P. Hautojärvi, P. Lanki, C. Corbel, Phys. Rev. B 44, 10585–10600 (1991)

    ADS  Google Scholar 

  26. J. Makinen, P. Hautojarvi, C. Corbel, J. Phys. Condens. Matter 4, 5137 (1992)

    ADS  Google Scholar 

  27. V.J. Ghosh, B. Nielsen, T. Friessnegg, Phys. Rev. B. 61, 207–212 (2000)

    ADS  Google Scholar 

  28. A. Mills Jr., I.O.S. Press, Amsterdam 125, 209–258 (1995)

    Google Scholar 

  29. H. Saito, T. Hyodo, Radiat. Phys. Chem. 68, 431–434 (2003)

    ADS  Google Scholar 

  30. L. Vimala Devi, S. Sellaiyan, T. Selvalakshmi, H.J. Zhang, A. Uedono, K. Sivaji, S. Sankar, Adv. Powder Technol. 28, 3026–3038 (2017)

    Google Scholar 

  31. B. D. Cullity, S. R. Cullity, S. Stock, Elements of X-ray Diffraction (2001)

  32. P. Chand, A. Gaur, A. Kumar, U.K. Gaur, Appl. Surf. Sci. 307, 280–286 (2014)

    Google Scholar 

  33. A. Chelouche, T. Touam, F. Boudjouan, D. Djouadi, R. Mahiou, A. Bouloufa, G. Chadeyron, Z. Hadjoub, J. Mater. Sci. Mater. Electron. 28, 1546–1554 (2017)

    Google Scholar 

  34. B. Sahin, T. Kaya, Appl. Surf. Sci. 362, 532–537 (2016)

    ADS  Google Scholar 

  35. S.T. Hossain, E. Azeeva, K. Zhang, E.T. Zell, D.T. Bernard, S. Balaz, R. Wang, Appl. Surf. Sci. 455, 132–143 (2018)

    ADS  Google Scholar 

  36. J. Yang, R. Wang, L. Yang, J. Lang, M. Wei, M. Gao, X. Liu, J. Cao, X. Li, N. Yang, J. Alloys Compd. 8, 3606–3612 (2011)

    Google Scholar 

  37. S. Sellaiyan, L. Vimala-Devi, K. Sako, A. Uedono, K. Sivaji, J. Alloys Compd. 788, 549–558 (2019)

    Google Scholar 

  38. L.W. Wang, F. Wu, D.X. Tian, W.J. Li, L. Fang, C.Y. Kong, M. Zhou, J. Alloy, Compd. 623, 367–373 (2015)

    Google Scholar 

  39. E. Şennik, S. Kerli, Ü. Alver, Z.Z. Öztürk, Sens. Actuators B Chem. 216, 49–56 (2015)

    Google Scholar 

  40. R. Siegel, Annu. Rev. Mater. Sci. 10(1), 393–425 (1980)

    ADS  Google Scholar 

  41. F. Ameena, Ph.D. thesis, University of Texas at Arlington (2012)

  42. R. Pareja, R. De La Cruz, L. Díaz, J. Mater. Sci. 26(3), 593–596 (1991)

    ADS  Google Scholar 

  43. M. Majumder, R.B. Choudhary, A.K. Thakur, I. Karbhal, RSC Adv. 7(32), 20037–20048 (2017)

    ADS  Google Scholar 

  44. M. Miritello, R. Lo-Savio, A.M. Piro, G. Franzo, F. Priolo, F. Iacona, C. Bongiorno, J. Appl. Phys. 100(1), 013502 (2006)

    ADS  Google Scholar 

  45. Y. Tan, Z. Fang, W. Chen, P. He, J. Alloy. Compd. 509(21), 6321–6324 (2011)

    Google Scholar 

  46. T. Jia, W. Wang, F. Long, Z. Fu, H. Wang, Q. Zhang, Mater. Sci. Eng., B 162(3), 179–184 (2009)

    Google Scholar 

  47. H. Li, Z. Zhang, J. Huang, R. Liu, Q. Wang, J. Alloy. Compd. 550, 526–530 (2013)

    Google Scholar 

  48. J. Shi, J. Wang, W. Yang, Z. Zhu, Y. Wu, Mater. Res. (AHEAD) 19(2), 316–321 (2016)

    Google Scholar 

  49. T. Staab, R. Krause-Rehberg, B. Kieback, J. Mater. Sci. 34(16), 3833–3851 (1999)

    ADS  Google Scholar 

  50. D. Wang, Z. Chen, C. Li, X. Li, C. Cao, Z. Tang, Physica B 407(14), 2665–2669 (2012)

    ADS  Google Scholar 

  51. R.M. De La Cruz, R. Pareja, L. Diaz, J.V. GarcÃ-Ramos, Solid State Commun. 71(2), 93–95 (1989)

    ADS  Google Scholar 

  52. D. Biswas, A.S. Das, S. Kabi, L.S. Singh, M. Ahmed, S. Mukherjeee, P.M.G. Nambissan, J. Alloys Compd. 864, 158395 (2021)

    Google Scholar 

  53. P. Turchi, A. Wachs, K. Wetzler, J. Kaiser, R. West, Y. Jean, R. Howell, M. Fluss, J. Phys. Condens. Matter 2(6), 1635 (1990)

    ADS  Google Scholar 

  54. J. Ghijsen, L.-H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Phys. Rev. B 38(16), 11322 (1988)

    ADS  Google Scholar 

  55. A. Somoza, M. Petkov, K. Lynn, A. Dupasquier, Phys. Rev. B 65(9), 094107 (2002)

    ADS  Google Scholar 

  56. B. Pandey, N. Bhagat, Mater. Res. Express 5(6), 065030 (2018)

    ADS  Google Scholar 

  57. D. Gao, J. Zhang, J. Zhu, J. Qi, Z. Zhang, W. Sui, H. Shi, D. Xue, Nanoscale Res. Lett. 5(4), 769–772 (2010)

    ADS  Google Scholar 

  58. A. Janotti, C.G. Van de Walle, Phys. Rev. B 76(16), 165202 (2007)

    ADS  Google Scholar 

  59. F. Tuomisto, V. Ranki, K. Saarinen, D.C. Look, Phys. Rev. Lett. 91(20), 205502 (2003)

    ADS  Google Scholar 

  60. F. Tuomisto, K. Saarinen, D.C. Look, G.C. Farlow, Phys. Rev. B 72(8), 085206 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

The financial support from the University of Tsukuba Education and Research fund is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sellaiyan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellaiyan, S., Ajaykumari, P., Vimaladevi, L. et al. Li and Na metal ion-induced defects in CuO nanocrystallites studied by positron annihilation spectroscopy. Appl. Phys. A 129, 629 (2023). https://doi.org/10.1007/s00339-023-06891-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06891-9

Keywords

Navigation