Skip to main content
Log in

Er3+ induced point defects in ZnO and impact of Li+/Na+/K+ on the vacancy defects in ZnO:Er studied by positron annihilation spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The defects species in as-prepared ZnO, Er-doped, and co-doped (with Li/Na/K) nanocrystallites synthesized by combustion method were examined by Positron Annihilation Lifetime (PAL) and Doppler Broadening (DB) spectroscopy. The S and W parameters were derived from positron trapping of valence and core electrons extracted from the central and wing regions of DB spectra to identify the vacancy-type defects. For as-prepared Er-doped ZnO samples, the observed high value of S indicated that the vacancies and vacancy cluster defects were located at the grain surface and two-grain junction. With co-doping of Li/Na/K, the S value was decreased due to the dopant occupying the vacancy clusters. On annealing, the major recovery of such defects was observed with enormous decreasing S for Li co-doped sample. Positron lifetime variations signified the presence of defects compared with bulk ZnO. Er doping in ZnO evidenced a small increase of defects with a gradual decrease when co-doped with Li/Na/K indicating the co-dopant impurity occupied the vacancies in the grain boundary. The first lifetime component of 193 ps owing to the Zn-type vacancies in as-prepared ZnO were increased on Er doping, evidencing the replacement of the Zn2+ by Er3+ ion and thereby created point defects due to charge compensation. On annealing to 800 °C, Li co-doped ZnO:Er resulted to enormous reduction of second lifetime τ2, mean lifetime τave, and S value signifying the Li ion localised in Zn vacancy site. Annealed ZnO:Er + Na/K resulted in considerable intensification in defect concentrations than ZnO:Er + Li due to the vacancy migration to form as clusters. The defect type, defect modification, the influence of Er together with co-doped Li/Na/K in ZnO, and their effect on annealing are elucidated in detail from the positron annihilation characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Jinxiao, Y. Jun, H. Ning, Y. Jianfeng, Rare Metal Mater. Eng. 47(6), 1682–1688 (2018)

    Google Scholar 

  2. E.-B. Kim, S. Ameen, M.S. Akhtar, H.S. Shin, Sens. Actuators B 275, 422–431 (2018)

    Google Scholar 

  3. S.M. Yakout, Solid State Sci. 83, 207–217 (2018)

    ADS  Google Scholar 

  4. C. Coskun, D.C. Look, G.C. Farlow, J.R. Sizelove, Semicond. Sci. Technol. 19(6), 752 (2004)

    ADS  Google Scholar 

  5. S.O. Kucheyev, J.S. Williams, C. Jagadish, Vacuum 73(1), 93–104 (2004)

    ADS  Google Scholar 

  6. D. Skoda, P. Urbanek, J. Sevcik, L. Munster, V. Nadazdy, D.A. Cullen, P. Bazant, J. Antos, I. Kuritka, Org. Electron. 59, 337–348 (2018)

    Google Scholar 

  7. B. Santoshkumar, S. Kalyanaraman, R. Vettumperumal, R. Thangavel, I.V. Kityk, S. Velumani, J. Alloys Compd. 658, 435–439 (2016)

    Google Scholar 

  8. T. Elkar, N. Mzabi, P. Gemeiner, B. Dkhil, S. Guermazi, H. Guermazi, Superlattices Microstruct. 122, 349–361 (2018)

    ADS  Google Scholar 

  9. Y. Soo, S.W. Huang, Z.H. Ming, Y.H. Kao, G.C. Smith, E. Goldburt, R. Hodel, B. Kulkarni, J.V.D. Veliadis, R.N. Bhargava, J. Appl. Phys. 83(10), 5404–5409 (1998)

    ADS  Google Scholar 

  10. E.T. Goldburt, B. Kulkarni, R.N. Bhargava, J. Taylor, M. Libera, J. Lumin. 72, 190–192 (1997)

    Google Scholar 

  11. L. O’Neal, D. Anthony, C. Bonner, D. Geddis, Proc. SPIE 9744, Optical Components and Materials XIII, 97441G (2016)

  12. S. Bachir, K. Azuma, J. Kossanyi, P. Valat, J.C. Ronfard-Haret, J. Lumin. 75(1), 35–49 (1997)

    Google Scholar 

  13. Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, Y. Takeda, Appl. Phys. Lett. 87(9), 091109 (2005)

    ADS  Google Scholar 

  14. J.C. Ronfard-Haret, P. Valat, V. Wintgens, J. Kossanyi, J. Lumin. 91(1–2), 71–77 (2000)

    Google Scholar 

  15. K. Li, F. Lu, R. Fan, C. Ma, B. Xu, J. Lumin. 200, 9–13 (2018)

    Google Scholar 

  16. R.K. Kalaiezhily, G. Saravanan, V. Asvini, N. Vijayan, K. Ravichandran, Ceram. Int. 44(16), 19560–19569 (2018)

    Google Scholar 

  17. V. Kumar, A. Pandey, S.K. Swami, O.M. Ntwaeaborwa, H.C. Swart, V. Dutta, J. Alloys Compd. 766, 429–435 (2018)

    Google Scholar 

  18. Y. Bai, K. Yang, Y. Wang, X. Zhang, Y. Song, Opt. Commun. 281(10), 2930–2932 (2008)

    ADS  Google Scholar 

  19. R.J. Tilley, Defects in Solids, vol. 4 (Wiley, Hoboken, 2008)

    Google Scholar 

  20. E. Scorza, U. Birkenheuer, C. Pisani, J. Chem. Phys. 107(22), 9645–9658 (1997)

    ADS  Google Scholar 

  21. K. Vanheusden, C. Seager, W.T. Warren, D. Tallant, J. Voigt, Appl. Phys. Lett. 68(3), 403–405 (1996)

    ADS  Google Scholar 

  22. T. Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima, Y. Horikoshi, Jpn. J. Appl. Phys. 43(5R), 2602 (2004)

    ADS  Google Scholar 

  23. F. Pavón, A. Urbieta, P. Fernández, J. Lumin. 195, 396–401 (2018)

    Google Scholar 

  24. Y.W. Heo, D.P. Norton, S.J. Pearton, J. Appl. Phys. 98, 073502 (2005)

    ADS  Google Scholar 

  25. H. Han, L. Yang, Y. Liu, Y. Zhang, Q. Yang, Opt. Mater. 31(2), 338–341 (2008)

    ADS  Google Scholar 

  26. Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, Q. Zeng, Y. Zhang, H. Zhang, J. Lumin. 128(1), 15–21 (2008)

    Google Scholar 

  27. X. Wang, X. Kong, G. Shan, Y. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, Y. Li, J. Phys. Chem. B 108(48), 18408–18413 (2004)

    Google Scholar 

  28. T. Andelman, Y. Gong, M. Polking, M. Yin, I. Kuskovsky, G. Neumark, S. O’Brien, J. Phys. Chem. B 109(30), 14314–14318 (2005)

    Google Scholar 

  29. S. Yamauchi, Y. Goto, T. Hariu, J. Cryst. Growth 260(1), 1–6 (2004)

    ADS  Google Scholar 

  30. Q. Zhao, P. Klason, M. Willander, H. Zhong, W. Lu, J. Yang, Appl. Phys. Lett. 87(21), 211912 (2005)

    ADS  Google Scholar 

  31. P. Klason, T.M. Børseth, Q.X. Zhao, B.G. Svensson, A.Y. Kuznetsov, P.J. Bergman, M. Willander, Solid State Commun. 145(5–6), 321–326 (2008)

    ADS  Google Scholar 

  32. J. Cui, M. Thomas, J. Appl. Phys. 106(3), 033518 (2009)

    ADS  Google Scholar 

  33. A. Bera, D. Basak, Chem. Phys. Lett. 476(4–6), 262–266 (2009)

    ADS  Google Scholar 

  34. J. Sivasankari, S. Sankar, L. Vimala Devi, J. Mater. Sci. Mater. Electron. 26(10), 8089–8096 (2014)

    Google Scholar 

  35. J. Sivasankari, S. Sankar, S. Selvakumar, L. Vimaladevi, R. Krithiga, Mater. Chem. Phys. 143(3), 1528–1535 (2014)

    Google Scholar 

  36. T.-H. Lee, H.H. Nersisyan, S.-C. Kwon, S.-H. Joo, K.-T. Park, J.-H. Lee, Int. J. Miner. Process. 153, 87–94 (2016)

    Google Scholar 

  37. S. Nezhadesm-Kohardafchahi, S. Farjami-Shayesteh, Y. Badali, Å. Altındal, M.A. Jamshidi-Ghozlu, Y. Azizian-Kalandaragh, Mater. Sci. Semicond. Process. 86, 173–180 (2018)

    Google Scholar 

  38. J.-H. Ryu, P. Kongsy, D.-Y. Lim, S.-B. Cho, J.-H. Song, Ceram. Int. 42(15), 17565–17570 (2016)

    Google Scholar 

  39. M.M. Eldrup, P. Sanders, J. Weertman, Materials Science Forum (Trans Tech Publications, Zurich, 1997), pp. 436–438

    Google Scholar 

  40. H. Saito, T. Hyodo, Radiat. Phys. Chem. 68(3), 431–434 (2003)

    ADS  Google Scholar 

  41. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice Hall, Upper Saddle River, 2001)

    Google Scholar 

  42. M. Miritello, R. Lo Savio, A.M. Piro, G. Franzo, F. Priolo, F. Iacona, C. Bongiorno, J. Appl. Phys. 100(1), 013502 (2006)

    ADS  Google Scholar 

  43. H. Li, Z. Zhang, J. Huang, R. Liu, Q. Wang, J. Alloys Compd. 550, 526–530 (2013)

    Google Scholar 

  44. S. Ghosh, G.G. Khan, A. Ghosh, S. Varma, K. Mandal, CrystEngComm 15(38), 7748–7755 (2013)

    Google Scholar 

  45. L. Xu, F. Gu, J. Su, Y. Chen, X. Li, X. Wang, J. Alloys Compd. 509(6), 2942–2947 (2011)

    Google Scholar 

  46. R. Krithiga, S. Sankar, G. Subhashree, Superlattices Microstruct. 75, 621–633 (2014)

    ADS  Google Scholar 

  47. R. Yogamalar, P.S. Venkateswaran, M.R. Benzigar, K. Ariga, A. Vinu, A.C. Bose, J. Nanosci. Nanotechnol. 12(1), 75–83 (2012)

    Google Scholar 

  48. R. Krause-Rehberg, H.S. Leipner, T. Abgarjan, A. Polity, Appl. Phys. A Mater. Sci. Process. 66(6), 599–614 (1998)

    ADS  Google Scholar 

  49. T. Suzuki, S. Iida, T. Yamashita, Y. Nagashima, J. Phys. Conf. Ser. 618(1), 012015 (2015)

    Google Scholar 

  50. A. Uedono, T. Koida, A. Tsukazaki, M. Kawasaki, Z.Q. Chen, S.F. Chichibu, H. Koinuma, J. Appl. Phys. 93(5), 2481–2485 (2003)

    ADS  Google Scholar 

  51. T. Koida, S.F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa, H. Koinuma, Appl. Phys. Lett. 82(4), 532–534 (2003)

    ADS  Google Scholar 

  52. A. Zubiaga, F. Tuomisto, F. Plazaola, K. Saarinen, J.A. Garcia, J.F. Rommeluere, J. Zuniga-Perez, V. Muñoz-Sanjosé, Appl. Phys. Lett. 86(4), 042103 (2005)

    ADS  Google Scholar 

  53. K.H. Tam, C.K. Cheung, Y.H. Leung, A.B. Djurišić, C.C. Ling, C.D. Beling, S. Fung, W.M. Kwok, W.K. Chan, D.L. Phillips, J. Phys. Chem. B 110(42), 20865–20871 (2006)

    Google Scholar 

  54. R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors: Defect Studies (Springer Science & Business Media, Berlin, 1999)

    Google Scholar 

  55. M. Eldrup, Le Journal de Physique IV 5(C1), C1-93–C1-109 (1995)

    Google Scholar 

  56. F. Tuomisto, in Semiconductors and Semimetals, ed. B. G. Svensson, S. J. Pearton, C. Jagadish (Elsevier, Amsterdam, 2013), vol 88, pp. 39–65

    Google Scholar 

  57. F. Tuomisto, I. Makkonen, Rev. Mod. Phys. 85(4), 1583 (2013)

    ADS  Google Scholar 

  58. T. Staab, R. Krause-Rehberg, B. Kieback, Mater. Sci. 34(16), 3833–3851 (1999)

    ADS  Google Scholar 

  59. R. Pareja, R. De La Cruz, L. Díaz, J. Mater. Sci. 26(3), 593–596 (1991)

    ADS  Google Scholar 

  60. M. Mizuno, H. Araki, Y. Shirai, Mater. Trans. 45(7), 1964–1967 (2004)

    Google Scholar 

  61. G. Brauer, W. Anwand, W. Skorupa, J. Kuriplach, O. Melikhova, C. Moisson, H. Von Wenckstern, H. Schmidt, M. Lorenz, M. Grundmann, Phys. Rev. B 74(4), 045208 (2006)

    ADS  Google Scholar 

  62. G. Brauer, W. Anwand, D. Grambole, J. Grenzer, W. Skorupa, J. Čížek, J. Kuriplach, I. Procházka, C.C. Ling, C.K. So, Phys. Rev. B 79(11), 115212 (2009)

    ADS  Google Scholar 

  63. S.K. Sharma, P.K. Pujari, K. Sudarshan, D. Dutta, M. Mahapatra, S.V. Godbole, O.D. Jayakumar, A.K. Tyagi, Solid State Commun. 149(13–14), 550–554 (2009)

    ADS  Google Scholar 

  64. G. Brauer, W. Anwand, W. Skorupa, J. Kuriplach, O. Melikhova, J. Cizek, I. Prochazka, C. Moisson, H. von Wenckstern, H. Schmidt, Superlattices Microstruct. 42(1–6), 259–264 (2007)

    ADS  Google Scholar 

  65. F. Tuomisto, V. Ranki, K. Saarinen, D.C. Look, Phys. Rev. Lett. 91(20), 205502 (2003)

    ADS  Google Scholar 

  66. D.D. Wang, Z.Q. Chen, C.Y. Li, X.F. Li, C.Y. Cao, Z. Tang, Phys. B Condens. Matter 407(14), 2665–2669 (2012)

    ADS  Google Scholar 

  67. H.S. Domingos, J.M. Carlsson, P.D. Bristowe, B. Hellsing, Interface Sci. 12(2–3), 227–234 (2004)

    Google Scholar 

  68. D. Wang, Z.Q. Chen, D.D. Wang, N. Qi, J. Gong, C.Y. Cao, Z. Tang, J. Appl. Phys. 107(2), 023524 (2010)

    ADS  Google Scholar 

  69. Z. Chen, S. Yamamoto, M. Maekawa, A. Kawasuso, X. Yuan, T. Sekiguchi, J. Appl. Phys. 94(8), 4807–4812 (2003)

    ADS  Google Scholar 

  70. A. Karbowski, K. Fedus, J. Patyk, Å.U. Bujak, K.S. Służewski, G. Karwasz, Nukleonika 58, 189–194 (2013)

    Google Scholar 

  71. K. Jayanthi, S. Chawla, A.G. Joshi, Z.H. Khan, R. Kotnala, J. Phys. Chem. C 114(43), 18429–18434 (2010)

    Google Scholar 

  72. N. Khichar, S. Bishnoi, S. Chawla, RSC Adv. 4(36), 18811–18817 (2014)

    Google Scholar 

  73. B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79(7), 943–945 (2001)

    ADS  Google Scholar 

  74. P.K. Nayak, J. Yang, J. Kim, S. Chung, J. Jeong, C. Lee, Y. Hong, J. Phys. D Appl. Phys. 42(3), 035102 (2008)

    ADS  Google Scholar 

  75. B. Cheng, X. Yu, H. Liu, M. Fang, L. Zhang, J. Appl. Phys. 105(1), 014311 (2009)

    ADS  Google Scholar 

Download references

Acknowledgements

The financial support by University of Tsukuba, Japan is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sellaiyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellaiyan, S., Uedono, A., Devi, L.V. et al. Er3+ induced point defects in ZnO and impact of Li+/Na+/K+ on the vacancy defects in ZnO:Er studied by positron annihilation spectroscopy. Appl. Phys. A 125, 497 (2019). https://doi.org/10.1007/s00339-019-2783-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2783-6

Navigation