Skip to main content
Log in

Electrodes: the real performers in single-barrier ferroelectric tunnel junctions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To study the role of the emitter and collector electrode materials in Ferroelectric Tunnel Junctions (FTJs), an in-depth theoretical investigation of 4 single-barrier FTJs (Pt/BTO/SRO, Pt/BTO/Pt, SRO/BTO/SRO, and SRO/BTO/Pt) is reported. Compared with all known conduction mechanisms in FTJ, it is found that direct quantum tunneling provides the most predominant contribution to the current density in the above systems for the bias range of 0–1.2 V. The lowering of the barrier height and asymmetry in the barrier profile which determines the tunneling current is controlled by the potential drop in the accumulation region in the emitter and the depletion region in the collector which depends on the ratio of screening length, \(\delta\), to permittivity, \(\epsilon\), of the corresponding electrodes. The tunneling electro-resistance ratio (TER) is found to have significant values for bias potential \(V>\left|P\right|\left(\frac{{\delta }_{1}}{{\epsilon }_{1}}+\frac{{\delta }_{2}}{{\epsilon }_{2}}\right)\) wherein the screening charge density \({\sigma }_{s},\) and the net charge density in the barrier layer \(\left({\sigma }_{s}-P\right)\) remain negative resulting in the pull-down of the barrier toward the Fermi level and producing a negative slope in the barrier to increase the tunneling current. Among the studied systems, Pt/BTO/SRO provides the highest TER. Specifically, Pt/24Ǻ BTO/SRO system with an active device length of 5.6 nm is found to have a current density of 2.54 × 104A/cm2 and 1.28 × 102A/cm2 in the ON and OFF state and a TER of nearly 20,000% at the bias of 0.71 V confirming to the necessary conditions of efficient application in memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.A. Zidan, J.P. Strachan, W.D. Lu, The future of electronics is based on memristive systems. Nat. Electron. 1(1), 22–29 (2018). https://doi.org/10.1038/s41928-017-0006-8

    Article  Google Scholar 

  2. D. Ielmini, H.-S.P. Wong, In-memory computing with resistive switching devices. Nat. Electron. 1(6), 333–343 (2018). https://doi.org/10.1038/s41928-018-0092-2

    Article  Google Scholar 

  3. K.L. Wang, J.G. Alzate, P. KhaliliAmiri, Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D Appl. Phys. 46(7), 74003 (2013). https://doi.org/10.1088/0022-3727/46/7/074003

    Article  Google Scholar 

  4. J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8(1), 13–24 (2013). https://doi.org/10.1038/nnano.2012.240

    Article  ADS  Google Scholar 

  5. D. Loke, T.H. Lee, W.J. Wang, L.P. Shi, R. Zhao, Y.C. Yeo, S.R. Elliott, Breaking the speed limits of phase-change memory. Science 336(6088), 1566–1569 (2012). https://doi.org/10.1126/science.1221561

    Article  ADS  Google Scholar 

  6. F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, E. Ma, Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science 358(6369), 1423–1427 (2017). https://doi.org/10.1126/science.aao3212

    Article  ADS  Google Scholar 

  7. D. Apalkov, B. Dieny, J.M. Slaughter, Magnetoresistive random access memory. Proc. IEEE 104(10), 1796–1830 (2016). https://doi.org/10.1109/jproc.2016.2590142

    Article  Google Scholar 

  8. J.-M. Hu, Z. Li, L.-Q. Chen, C.-W. Nan, High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat. Commun. (2011). https://doi.org/10.1038/ncomms1564

    Article  Google Scholar 

  9. T.-C. Chang, K.-C. Chang, T.-M. Tsai, T.-J. Chu, S.M. Sze, Resistance random access memory. Mater. Today 19(5), 254–264 (2016). https://doi.org/10.1016/j.mattod.2015.11.009

    Article  Google Scholar 

  10. V. Garcia, M. Bibes, Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. (2014). https://doi.org/10.1038/ncomms5289

    Article  Google Scholar 

  11. W. Huang, W. Zhao, Z. Luo, Y. Yin, Y. Lin, C. Hou, X.-G. Li, A high-speed and low-power multistate memory based on multiferroic tunnel junctions. Adv. Electron. Mater. 4(4), 1700560 (2018). https://doi.org/10.1002/aelm.201700560

    Article  Google Scholar 

  12. V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N.D. Mathur, A. Barthélémy, M. Bibes, Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460(7251), 81–84 (2009). https://doi.org/10.1038/nature08128

    Article  ADS  Google Scholar 

  13. N. Setter et al., Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006)

    Article  ADS  Google Scholar 

  14. A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, Solid-state memories based on ferroelectric tunnel junctions. Nat. Nanotechnol. 7(2), 101–104 (2011). https://doi.org/10.1038/nnano.2011.21

    Article  ADS  Google Scholar 

  15. Z. Li, X. Guo, H.-B. Lu, Z. Zhang, D. Song, S. Cheng, W. Zhu, An Epitaxial ferroelectric tunnel junction on silicon. Adv. Mater. 26(42), 7185–7189 (2014). https://doi.org/10.1002/adma.201402527

    Article  Google Scholar 

  16. C. Ma, Z. Luo, W. Huang, L. Zhao, Q. Chen, Y. Lin, X. Li, Sub-nanosecond memristor based on ferroelectric tunnel junction. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-15249-1

    Article  Google Scholar 

  17. C. Li, L. Huang, T. Li, W. Lü, X. Qiu, Z. Huang, Ultrathin BaTiO3-based ferroelectric tunnel junctions through interface engineering. Nano Lett. 15(4), 2568–2573 (2015). https://doi.org/10.1021/acs.nanolett.5b00138

    Article  ADS  Google Scholar 

  18. A. Gruverman, D. Wu, H. Lu, Y. Wang, H.W. Jang, C.M. Folkman, Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett. 9(10), 3539–3543 (2009). https://doi.org/10.1021/nl901754t

    Article  ADS  Google Scholar 

  19. L. Esaki, R.B. Laibowits, P.J. Stiles: 1971 Polar Switch IBM Tech. Discl. Bull 13

  20. P. Gao, Z. Zhang, M. Li, R. Ishikawa, B. Feng, H.-J. Liu, The possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films. Nat. Commun. 8, 15549 (2017). https://doi.org/10.1038/ncomms15549

    Article  ADS  Google Scholar 

  21. Y. Zheng, C.H. Woo, Giant piezoelectric resistance in ferroelectric tunnel junctions. Nanotechnology 20(7), 075401 (2009). https://doi.org/10.1088/0957-4484/20/7/075401

    Article  ADS  Google Scholar 

  22. P. Sun, Y.-Z. Wu, T.-Y. Cai, S. Ju, Effects of ferroelectric dead layer on the electron transport in ferroelectric tunneling junctions. Appl. Phys. Lett. 99(5), 052901 (2011). https://doi.org/10.1063/1.3619841

    Article  ADS  Google Scholar 

  23. J.D. Burton, E.Y. Tsymbal, Giant tunneling electroresistance effect driven by an electrically controlled spin valve at a complex oxide interface. Phys. Rev. Lett. 106, 15 (2011). https://doi.org/10.1103/physrevlett.106.15720

    Article  Google Scholar 

  24. K.M. Indlekofer, H. Kohlstedt, Simulation of quantum dead-layers in nanoscale ferroelectric tunnel junctions. Europhys. Lett. (EPL) 72(2), 282–286 (2005). https://doi.org/10.1209/epl/i2005-10219-7

    Article  ADS  Google Scholar 

  25. N.F. Hinsche, M. Fechner, P. Bose, S. Ostanin, J. Henk, I. Mertig, P. Zahn, Strong influence of complex band structure on tunneling electroresistance: a combined model and initiostudy. Phys. Rev. B 82, 21 (2010). https://doi.org/10.1103/physrevb.82.214110

    Article  Google Scholar 

  26. Y. Zhou, Tunneling magnetoresistance modulation in a magnetic tunnel junction with a ferroelectric barrier. Nanotechnology 22(8), 085202 (2011). https://doi.org/10.1088/0957-4484/22/8/085202

    Article  ADS  Google Scholar 

  27. L.L. Tao, J. Wang, Ferroelectricity and tunneling electroresistance effect in asymmetric ferroelectric tunnel junctions. J. Appl. Phys. 119(22), 224104 (2016). https://doi.org/10.1063/1.4953642

    Article  ADS  Google Scholar 

  28. X. Luo, Y. Zheng, B. Wang, First-principles calculations of size-dependent giant electroresistance effect in nanoscale asymmetric ferroelectric tunnel junctions. J. Appl. Phys. 111(7), 074102 (2012). https://doi.org/10.1063/1.3698503

    Article  ADS  Google Scholar 

  29. D.I. Bilc, F.D. Novaes, J. Íñiguez, P. Ordejón, P. Ghosez, Electroresistance effect in ferroelectric tunnel junctions with symmetric electrodes. ACS Nano 6(2), 1473–1478 (2012). https://doi.org/10.1021/nn2043324

    Article  Google Scholar 

  30. H. Kohlstedt, N.A. Pertsev, J. Rodríguez Contreras, R. Waser, Theoretical current-voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B 72, 12 (2005). https://doi.org/10.1103/physrevb.72.125341

    Article  Google Scholar 

  31. N.A. Zimbovskaya, Electron transport through asymmetric ferroelectric tunnel junctions: current–voltage characteristics. J. Appl. Phys. 106(12), 124101 (2009). https://doi.org/10.1063/1.3271131

    Article  ADS  Google Scholar 

  32. X. Lu, H. Li, W. Cao, Current-voltage characteristics and ON/OFF ratio in ferroelectric tunnel junctions. J. Appl. Phys. 112(5), 054102 (2012). https://doi.org/10.1063/1.4748051

    Article  ADS  Google Scholar 

  33. A. Useinov, A. Kalitsov, J. Velev, N. Kioussis, Bias-dependence of the tunneling electroresistance and magnetoresistance in multiferroic tunnel junctions. Appl. Phys. Lett. 105(10), 102403 (2014). https://doi.org/10.1063/1.4895537

    Article  ADS  Google Scholar 

  34. J. Wang, S. Ju, Z.Y. Li, Bias voltage effect on electron tunneling across a junction with a ferroelectric–ferromagnetic two-phase composite barrier. J. Magn. Magn. Mater. 324(6), 1067–1070 (2012). https://doi.org/10.1016/j.jmmm.2011.10.024

    Article  ADS  Google Scholar 

  35. L.B. Zhang, M.H. Tang, J.C. Li, Y.G. Xiao, Effects of applied bias voltage in tunnel junctions with ferroelectric barrier. Solid-State Electron. 68, 8–12 (2012). https://doi.org/10.1016/j.sse.2011.09.005

    Article  ADS  Google Scholar 

  36. Z.J. Ma, G. Chen, P. Zhou, Z.H. Mei, T.J. Zhang, Ferroelectric tunneling under bias voltages. J. Phys. D Appl. Phys. 50(1), 015303 (2016). https://doi.org/10.1088/1361-6463/50/1/015303

    Article  ADS  Google Scholar 

  37. J. Li, X. Dong, Y. Chen, Y. Zhang, Space-charge-limited leakage current characteristics influenced by field-dependent permittivity in high dielectric constant and ferroelectric thin films. Appl. Phys. Lett. 88(21), 212905 (2006). https://doi.org/10.1063/1.2203512

    Article  ADS  Google Scholar 

  38. R.R. Mehta, B.D. Silverman, J.T. Jacobs, Depolarization fields in thin ferroelectric films. J. Appl. Phys. 44(8), 3379–3385 (1973). https://doi.org/10.1063/1.1662770

    Article  ADS  Google Scholar 

  39. N.W. Ashcroft, N.D. Mermin, Solid state physics (Saunders College Publishing, New York, 1976)

    MATH  Google Scholar 

  40. D.J. Kim, J.Y. Jo, Y.S. Kim, Y.J. Chang, J.S. Lee, J.-G. Yoon, T.W. Noh, Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3 capacitors. Phys. Rev. Lett. (2005). https://doi.org/10.1103/physrevlett.95.237602

    Article  Google Scholar 

  41. P.K. Mahapatra, K. Bhattacharyya, A. Khan, C.L. Roy, Realistic model of Wannier Stark ladders in superlattices. Phys. Rev. B 58(3), 1560–1571 (1998). https://doi.org/10.1103/physrevb.58.1560

    Article  ADS  Google Scholar 

  42. P.K. Mahapatra, P. Panchadhyayee, S.P. Bhattacharya, A. Khan, Resonant tunneling in electrically biased multibarrier systems. Phys. B 403(17), 2780–2788 (2008). https://doi.org/10.1016/j.physb.2008.02.008

    Article  ADS  Google Scholar 

  43. P. Panchadhyayee, R. Biswas, A. Khan, P.K. Mahapatra, Current density in generalized Fibonacci superlattices under a uniform electric field. J. Phys. Condens. Matter 20(27), 275243 (2008). https://doi.org/10.1088/0953-8984/20/27/275243

    Article  ADS  Google Scholar 

  44. L. Xu, T. Wen, X. Yang, C. Xue, J. Xiong, W. Zhang, H.D. Hochheimer, Mesopiezoresistive effects in double-barrier resonant tunneling structures. Appl. Phys.0 Lett. 92(4), 043508 (2008). https://doi.org/10.1063/1.2839316

    Article  Google Scholar 

  45. J. He, Z. Ma, W. Geng, X. Chou, Ferroelectric tunneling through a composite barrier under bias voltages. Mater. Res. Exp. (2019). https://doi.org/10.1088/2053-1591/ab463a

    Article  Google Scholar 

  46. M.-Q. Cai, Y. Zheng, P.-W. Ma, C.H. Woo, Vanishing critical thickness in asymmetric ferroelectric tunnel junctions: first principle simulations. J. Appl. Phys. 109(2), 024103 (2011). https://doi.org/10.1063/1.3532000

    Article  ADS  Google Scholar 

  47. Z. Wen, L. You, J. Wang, A. Li, D. Wu, Temperature-dependent tunneling electroresistance in Pt/BaTiO3/SrRuO3 ferroelectric tunnel junctions. Appl. Phys. Lett. 103(13), 132913 (2013). https://doi.org/10.1063/1.4823580

    Article  ADS  Google Scholar 

  48. L. Wang, M.R. Cho, Y.J. Shin, J.R. Kim, S. Das, J.-G. Yoon, T.W. Noh, Overcoming the fundamental barrier thickness limits of ferroelectric tunnel junctions through BaTiO3/SrTiO3 composite barriers. Nano Lett. 16(6), 3911–3918 (2016). https://doi.org/10.1021/acs.nanolett.6b01418

    Article  ADS  Google Scholar 

Download references

Funding

The authors did not receive financial support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception, and design. Theoretical formulation, data collection, and analysis were performed by SI, SKS, and PKM. The first draft of the manuscript was written by SI and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sushree Ipsita.

Ethics declarations

Conflict of interest

We confirm that the authors have no conflicts to disclose.

Ethics approval

No animals or human participants were involved for conducting this research.

Informed consent

All the authors have full consent to the submission of the research work in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ipsita, S., Sahu, S.K. & Mahapatra, P.K. Electrodes: the real performers in single-barrier ferroelectric tunnel junctions. Appl. Phys. A 129, 628 (2023). https://doi.org/10.1007/s00339-023-06887-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06887-5

Keywords

Navigation