Skip to main content
Log in

Impact of controlling the barrier height on fabrication of high performance β-Ga2O3 solar-blind photodetectors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Photodetectors based on Ga2O3 have stimulated extensive attention for diverse applications from civil and military filed. Great progress has been made in the fabrication of Ga2O3-based photodetector, but they still suffer from their low detectivity. In this study, we present an investigation to achieve ultra-low dark current and high detectivity solar-blind for Ga2O3-based photodetector by controlling the defect concentration and interface state well with the pulsed laser deposition method. By using pulsed laser deposition, the stoichiometric multi-component film can be obtained. It has been found that the excellent performances of our device (ultrathin thickness of 47 nm) with a low dark current of pA as well as a high sensitivity of 6.25 × 103 (Iphoto/Idark) are obtained in the as-grown PD under an oxygen pressure of 50 mTorr. Through high temperature annealing of 800 °\(\mathrm{C}\) and high oxygen pressure of 50 mTorr, the fast response speed (a decay time of 15 ms) is achieved. These are attributed to the co-effect of well-controlled high mobility, reduced oxygen vacancy defects in Ga2O3 film and increased Schottky barrier height between metal oxide films and metal contact. The electronic transport mechanism in the devices is described in detail to reveal clearly the influence of gas pressure on the optoelectronic properties of photodetectors, which open a promising direction for the development of high-quality economical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data included in article/supplementary material/referenced in article.

References

  1. E.V. Gorokhov, A.N. Magunov, V.S. Feshchenko, A.A. Altukhov, Solar-blind UV flame detector based on natural diamond. Instrum. Exp. Tech. 51, 280–283 (2008)

    Google Scholar 

  2. B. Ouyang, K. Zhang, Y. Yang, Self-powered UV photodetector array based on P3HT/ZnO nanowire array heterojunction. Adv. Mater. Technol. 2, 1700208 (2017)

    Google Scholar 

  3. R. Tang, G. Li, Y. Jiang, N. Gao, J. Li, C. Li, K. Huang, J. Kang, T. Wang, R. Zhang, Predicting the Raman spectra of ferroelectric phases in two-dimensional Ga2O3 monolayer. ACS Appl. Electron. Mater. 4, 188–196 (2022)

    Google Scholar 

  4. N. Nasiri, R. Bo, F. Wang, L. Fu, A. Tricoli, Ultraporous electron-depleted ZnO nanoparticle networks for highly sensitive portable visible-blind UV photodetector. Adv. Mater. 27, 4336–4343 (2015)

    Google Scholar 

  5. S. Liu, M.-Y. Li, J. Zhang, D. Su, Z. Huang, S. Kunwar, J. Lee, Self-assembled Al nanostructured/ZnO quantum dot heterostructures for high responsivity and fast UV photodetector. Nano-Micro Lett. 12, 114 (2020)

    ADS  Google Scholar 

  6. C. Xie, X.T. Lu, X.W. Tong, Z.X. Zhang, F.X. Liang, L. Liang, L.B. Luo, Y.C. Wu, Recent progress in solar-blind deep-ultraviolet photodetector based on inorganic ultrawide bandgap semiconductors. Adv. Funct. Mater. 29, 1806006 (2019)

    Google Scholar 

  7. Z. Guo, D. Jiang, N. Hu, X. Yang, W. Zhang, Y. Duan, S. Gao, Q. Liang, T. Zheng, J. Lv, Significant enhancement of MgZnO metal-semiconductor-metal photodetectors via coupling with Pt nanoparticles surface plasmons. Nanoscale Res. Lett. 13, 168 (2018)

    ADS  Google Scholar 

  8. H. So, J. Lim, D. Senesky, Continuous V-grooved AlGaN/GaN surfaces for high-temperature ultraviolet photodetectors. IEEE Sens. J. 16, 3633–3639 (2016)

    ADS  Google Scholar 

  9. X. Chang, W.F. Wang, X. Zhang, Z. Liu, J. Fu, S. Fan, R. Bu, J. Zhang, W. Wang, H.X. Wang, J. Wang, UV-photodetector based on NiO/diamond film. Appl. Phys. Lett. 112, 032103 (2018)

    ADS  Google Scholar 

  10. S.H. Lee, S.B. Kim, Y.-J. Moon, S.M. Kim, H.J. Jung, M.S. Seo, K.M. Lee, S.-K. Kim, S.W. Lee, High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxides films. ACS Phot. 4, 2937 (2017)

    Google Scholar 

  11. S. Rafique, L. Han, M.J. Tadjer, J.AJr. Freitas, N.A. Maadik, H. Zhao, Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition. Appl. Phys. Lett. 108, 182105 (2016)

    ADS  Google Scholar 

  12. S. Kumar, C. Tessarek, G. Sarau, S. Christiansen, R. Singh, Self-catalytic growth of β-Ga2O3 nanostructures by chemical vapor deposition. Adv. Eng. Mater. 17, 709–715 (2015)

    Google Scholar 

  13. S. Ghose, Md.S. Rahman, Structural and optical properties of β-Ga2O3 thin films grown by plasma-assisted molecular beam epitaxy. J. Vacuu. Sci. Tech. 34, 02L109 (2016)

    Google Scholar 

  14. D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, W. Tang, Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology. Opt. Mater. Exp. 4, 1067–1076 (2014)

    ADS  Google Scholar 

  15. L. Huang, Q. Feng, G. Han, F. Li, X. Li, L. Fang, X. Xing, J. Zhang, Y. Hao, Comparison study of β-Ga2O3 photodetectors grown on sapphire at different oxygen pressures. IEEE Phot. J. 9, 6803708 (2017)

    Google Scholar 

  16. K. Arora, N. Goel, M. Kumar, M. Kumar, Ultrahigh performance of self-powered β-Ga2O3 thin film solar-blind photodetector grown on cost-effective Si substrate using high-temperature seed layer. ACS Phot. 5, 2391–2401 (2018)

    Google Scholar 

  17. Z. Hu, Q. Cheng, T. Zhang, Y. Zhang, X. Tian, Y. Zhang, Q. Feng, W. Xing, J. Ning, C. Zhang, J. Zhang, Y. Hao, Solar-blind photodetectors fabricated on β-Ga2O3 films deposited on 6° off-angled sapphire substrate. J. Luminesc. 255, 119596 (2023)

    ADS  Google Scholar 

  18. R. Xu, X. Ma, Y. Chen, Y. Mei, L. Ying, B. Zhang, H. Long, Mater. Sci. Second. Process. 144, 106621 (2022)

    Google Scholar 

  19. M. Baldini, M. Albrecht, D. Gogova, R. Schewski, G. Wagner, Effect of indium as a surfactant in (Ga1-xInx)2O3 epitaxial growth on β-Ga2O3 by metal organic vapour phase epitaxial. Semicond. Sci. Tech 30, 024013 (2015)

    ADS  Google Scholar 

  20. T. Oshima, T. Okuno, S. Fujita, Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn. J. Appl. Phys. 46, 7217–7220 (2007)

    ADS  Google Scholar 

  21. L.X. Qian, Y. Wang, Z.H. Wu, T. Sheng, X.Z. Liu, β-Ga2O3 solar-blind deep-ultraviolet photodetctor based on annealed sapphire substrate. Vacuum 140, 106–110 (2017)

    ADS  Google Scholar 

  22. S. Bhowmick, R. Saha, M. Mishra, A. Sengupta, S. Chattopadhyay, S. Chakrabarti, Oxygen mediated defect evolution in RF sputtered Ga2O3 thin films on p-Si substrate. Mater. Today Commun. 33, 104766 (2022)

    Google Scholar 

  23. L. Gu, H.-P. Ma, Y. Shen, J. Zhang, W.-J. Chen, R.-Y. Yang, F. Wu, L. Yang, Y.-X. Zeng, X.-R. Wang, J.-T. Zhu, Q.-C. Zhang, Temperature-dependent oxygen annealing effect on the properties of Ga2O3 thin film deposited by atomic layer deposition. J. Alloy. Comp. 925, 166727 (2022)

    Google Scholar 

  24. T. Fan, N. Tang, J. Weii, S. Zhang, Z. Sun, G. Li, J. Jiang, L. Fu, Y. Zhang, Y. Yuan, X. Rong, W. Ge, X. Wang, Reduction of vacancy defects induced by thermal annealing in β-Ga2O3 epilayer. Micro Nanostruct. 176, 207525 (2023)

    Google Scholar 

  25. T.K.O. Vu, D.U. Lee, E.K. Kim, The enhancement mechanism of photo-response depending on oxygen pressure for Ga2O3 photodetectors. Nanotechnology 31, 245201 (2020)

    ADS  Google Scholar 

  26. T.K.O. Vu, D.U. Lee, E.K. Kim, The effect of oxygen partial pressure on band gap modulation of Ga2O3 grown by pulsed laser deposition. J. Alloy. Comp. 806, 874–880 (2019)

    Google Scholar 

  27. A.S. Pratiyush, S. Krishnamoorthy, S.V. Solanke, Z. Xia, R. Muralidharan, S. Rajan, N.D. Nath, High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector. App. Phys. Lett. 110, 221107 (2017)

    ADS  Google Scholar 

  28. F.P. Yu, S.L. Ou, D.S. Wuu, Pulsed laser deposition of gallium oxides films for high performance solar-blind photodetector. Opt. Mater. Express 5, 1240 (2015)

    ADS  Google Scholar 

  29. Z. Hajnal, J. Miró, G. Kiss, F. Réti, P. Deák, R.C. Herndon, J.M. Kuperberg, Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3. J. Appl. Phys. 86, 3792–3796 (1999)

    ADS  Google Scholar 

  30. G. Schmitz, P. Gassmann, R. Franchy, A combined scanning tunneling microscopy and electron energy loss spectroscopy study on the formation of thin, well-ordered β-Ga2O3 films on CoGa(001). J. Appl. Phys. 83, 2533–2538 (1998)

    ADS  Google Scholar 

  31. B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, D. Zhao, Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core-shell mocrowire. Nano Lett. 156, 3988–3993 (2015)

    ADS  Google Scholar 

  32. M. Yu, C. Lv, J. Yu, Y. Shen, L. Yuan, J. Hu, S. Zhang, H. Cheng, Y. Zhang, R. Jia, High-performance photodetector based on sol-gel epitaxial grown a/β-Ga2O3 thin films. Mater. Today Commun. 25, 101532 (2020)

    Google Scholar 

  33. M. Heinemann, J. Berry, G. Teeter, T. Unold, D. Ginley, Oxygen deficiency and Sn doping of amorphous Ga2O3. Appl. Phys. Lett. 108(2), 022107 (2016)

    ADS  Google Scholar 

  34. J. Carrano, T. Li, P. Grudowski, C. Eiting, R. Dupuis, J. Campbell, Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN. J. Appl. Phys. 83(11), 6148–6160 (1998)

    ADS  Google Scholar 

  35. P. Gu, X. Zhu, D. Yang, Effect of annealing temperature on the performance of photoconductive ultraviolet detectors based on ZnO thin film. Appl. Phys. A 125, 50 (2019)

    ADS  Google Scholar 

  36. F. Yi, Q. Liao, X. Yan, Z. Bai, Z. Wang, X. Chen, Q. Zhang, Y. Huang, Y. Zhang, Simple fabrication of a ZnO nanorod array UV detector with a high performance. Phys. E Low-Dimens. Syst. Nanostruct. 61, 180–184 (2014)

    ADS  Google Scholar 

  37. Y.Y. Zhang, L.X. Qian, Z.H. Wu, P.T. Lai, X.Z. Liu, Improved performance of amorphous ingamgo metal-semiconductor-metal ultraviolet photodetector by post deposition annealing in oxygen. IEEE Trans. Nanotechnol. 17, 29–35 (2018)

    ADS  Google Scholar 

  38. J. Yu, Z. Nie, L. Dong, L. Yuan, D. Li, Y. Huang, L. Zhang, Y. Zhang, R. Jia, Influence of annealing temperature on structure and photoelectrical performance of β-Ga2O3/4H-SiC heterojunction photodetector. J. Alloy Comp. 798, 458–466 (2019)

    Google Scholar 

  39. A.J. Leenheer, J.D. Perkins, M. Van Hest, J.J. Berry, R.P. Ohayre, D.S. Ginley, General mobility and carrier concentration relationship in transparent amorphous indium zinc oxide films. Phys. Rev. B 77, 115215 (2008)

    ADS  Google Scholar 

  40. H. Hosono, N. Kikuchi, N. Ueda, H. Kawazoe, Working hypothesis to explore novel wide band gap electrical conducting amorphous oxides and examples. J. Non-crystall. Solid 200, 165–169 (1996)

    ADS  Google Scholar 

  41. S. Chen, M.E.A. Warwick, R. Binions, Effect of film thickness and thermal treatment on the structural and optoelectronic properties of Ga-doped ZnO films deposited by sol-gel method. Sol. Energy Mater. Sol. Cells 137, 202–209 (2015)

    Google Scholar 

  42. Y. Tu, S. Chen, X. Li, J. Gorbaciova, W.P. Gillin, S. Krause, J. Briscoe, Control of oxygen vacancies in ZnO nanorods by annealing and their influence on ZnO/PEDOT:PSS diode behavior. J. Mater. Chem. C 6, 1815–1821 (2018)

    Google Scholar 

  43. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2016 (2010)

    ADS  Google Scholar 

  44. O. Bierwagen, J.S. Speck, T. Nagata, T. Chikyow, Y. Yamashita, H. Yoshikawa, K. Kobayashi, Depletion of the In2O3 (001) and (111) surface electron accumulation by an oxygen plasma surface treatment. Appl. Phys. Lett. 98, 172101 (2011)

    ADS  Google Scholar 

  45. M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, R. Fornari, Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3. Appl. Phys. Lett. 101, 132106 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the excellent research team development program grant funded by Vietnam Academy of Science and Technology (VAST) (NCXS 02.05/22-23) and in part supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1A4A4078674)

Author information

Authors and Affiliations

Authors

Contributions

In this article, the author’s contribution are as follow: TKOV: study conception and design, data collection, and manuscript preparation. MTT: data collection and analysis and interpretation of results. BTTP: data collection and analysis and interpretation of results. NTMH: data collection and analysis and interpretation of results. EKK: study conception and design, and manuscript preparation.

Corresponding authors

Correspondence to Thi Kim Oanh Vu or Eun Kyu Kim.

Ethics declarations

Conflict of interest

The authors declare no competing financial or non-financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1243 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, T.K.O., Tran, M.T., Phuong, B.T.T. et al. Impact of controlling the barrier height on fabrication of high performance β-Ga2O3 solar-blind photodetectors. Appl. Phys. A 129, 600 (2023). https://doi.org/10.1007/s00339-023-06883-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06883-9

Keywords

Navigation