Skip to main content
Log in

Improving the production of high-performance solar-blind β-Ga2O3 photodetectors by controlling the growth pressure

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, β-Ga2O3 films are obtained by the RF magnetron sputtering method. Effects of the growth pressure on properties of the deposited β-Ga2O3 films and the corresponding solar-blind metal–semiconductor–metal photodetectors are investigated systematically. It is shown that when the deposition pressure increases, the full width at half maximum of β-Ga2O3\( \left( {\bar{2}01} \right) \) X-ray diffraction peaks decreases firstly and then increase. The peak intensities increase firstly, reach a maximum at 25 mTorr and then decrease with increasing pressure. The similar variation tendency is also reflected on the bandgap, oxygen vacancy and roughness of β-Ga2O3 films. It is supposed that all these properties depend on two factors: atoms diffusion ability and the defects with growth pressure. By controlling the growth pressure, the fabricated interdigitated solar-blind photodetectors exhibit excellent characteristics, including a large spectral responsivity (303 A/W), a low dark current (10pA at 20 V), a large photo-to-dark current ratio (> 105), a high external quantum efficiency (over 1 × 105%) and a fast response speed (rise time: 0.52 s and fall time: 0.12 s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Feng P, Zhang J, Li Q, Wang T (2006) Individual β-Ga2O3 nanowires as solar-blind photodetectors. Appl Phys Lett 88:153107

    Article  Google Scholar 

  2. Liao MY, Yasuo K (2006) High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film. Appl Phys Lett 89:113509

    Article  Google Scholar 

  3. Oshima T, Okuno T, Fujita S (2007) Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn J Appl Phys 46:7217–7220

    Article  Google Scholar 

  4. Rajan A, Yadav H, Gupta V et al (2013) Sol–gel derived Ag-doped ZnO thin film for UV photodetector with enhanced response. J Mater Sci 48:7994–8002. https://doi.org/10.1007/s10853-013-7611-3

    Article  Google Scholar 

  5. Fan M, Liu K, Zhang Z, Li B, Chen X, Zhao D, Shan C, Shen D (2014) High-performance solar-blind ultraviolet photodetector based on mixed-phase ZnMgO thin film. Appl Phys Lett 105:011117

    Article  Google Scholar 

  6. Chen H, Yu P, Zhang Z, Teng F, Zheng L, Hu K, Fang X (2016) Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer. Small 12:5809–5816

    Article  Google Scholar 

  7. Zhou X, Zhang Q, Gan L, Li X, Li H, Zhang Y, Golberg D, Zhai T (2016) High-performance solar-blind deep ultraviolet photodetector based on individual single-crystalline Zn2GeO4 nanowire. Adv Funct Mater 26:704–712

    Article  Google Scholar 

  8. Cicek E, McClintock R, Cho CY, Rahnema B, Razeghi M (2013) AlxGa1 − xN-based back-illuminated solar-blind photodetectors with external quantum efficiency of 89%. Appl Phys Lett 103:191108

    Article  Google Scholar 

  9. Li L, Lee PS, Yan C, Zhai T, Fang X, Liao M, Koide Y, Bando Y, Golberg D (2010) Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts. Adv Mater 22:5145–5149

    Article  Google Scholar 

  10. Guo E-J, Lu H-B, He M, Jin K-J, Yang G-Z (2010) Low-noise solar-blind photodetectors based on LaAlO3 single crystal with transparent indium-tin-oxide electrode as detection window. Appl Opt 49:5678–5681

    Article  Google Scholar 

  11. Lu X, Zhou L, Chen L et al (2018) Schottky x-ray detectors based on a bulk β-Ga2O3 substrate. Appl Phys Lett 112:103502

    Article  Google Scholar 

  12. Zhang D, Zheng W, Lin RC, Li TT, Zhang ZJ, Huang F (2018) High quality β-Ga2O3 film grown with N2O for high sensitivity solar-blind-ultraviolet photodetector with fast response speed. J Alloy Compd 735:150–154

    Article  Google Scholar 

  13. Feng Q, Huang L et al (2016) Comparison study of β-Ga2O3 photodetectors on bulk substrate and sapphire. IEEE Trans Electron Devices 20:3972–3978

    Google Scholar 

  14. Li L, Auer E, Liao M, Fang X, Zhai T, Gautam UK, Lugstein A, Koide Y, Bando Y, Golberg D (2011) Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts. Nanoscale 3:1120–1126

    Article  Google Scholar 

  15. Patil-Chaudhari D, Ombaba M, Oh JY, Mao H, Montgomery KH, Lange A, Mahajan S, Woodall JM, Islam MS (2017) Solar blind photodetectors enabled by nanotextured β-Ga2O3 films grown via oxidation of GaAs substrates. IEEE Photonics J 1:011202

    Google Scholar 

  16. Kim J, Oh S, Mastro MA et al (2016) Exfoliated beta-Ga2O3 nano-belt field-effect transistors for air-stable high power and high temperature electronics. Phys Chem Chem Phys 18:15760–15764

    Article  Google Scholar 

  17. Yoo JH, Rafique S, Lange A et al (2018) Lifetime laser damage performance of β-Ga2O3 for high power applications. APL Mater 6:036105

    Article  Google Scholar 

  18. Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T, Yamakoshi S (2016) Recent progress in Ga2O3 power devices. Semicond Sci Tech 31:034001

    Article  Google Scholar 

  19. Du X, Li Z, Luan C et al (2015) Preparation and characterization of Sn-doped β-Ga2O3 homoepitaxial films by MOCVD. J Mater Sci 50:3252–3257. https://doi.org/10.1007/s10853-015-8893-4

    Article  Google Scholar 

  20. Oshima T, Hashikawa M, Tomizawa S, Miki K, Oishi T, Sasaki K, Kuramata A (2018) β-Ga2O3-based metal–oxide–semiconductor photodiodes with HfO2 as oxide. Appl Phys Exp 11:112202

    Article  Google Scholar 

  21. Arora K, Goel N, Kumar M, Kumar M (2018) Ultra-high-performance of self-powered β-Ga2O3 thin film solar-blind photodetector grown on cost-effective Si substrate using high-temperature seed layer. ACS Photonics 5:2391–2401

    Article  Google Scholar 

  22. Kong WY, Wu GA, Wang KY, Zhang TF, Zou YF, Wang DD, Luo LB (2016) Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv Mater 28:10725–10731

    Article  Google Scholar 

  23. Guo D, Liu H, Li P, Wu Z, Wang S, Cui C, Li C, Tang W (2017) Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction. ACS Appl Mater Inter 9:1619–1628

    Article  Google Scholar 

  24. Qian L-X, Zhang H-F, Lai PT, Wu Z-H, Liu X-Z (2017) High-sensitivity β-Ga2O3 solar-blind photodetector on high-temperature pretreated c-plane sapphire substrate. Opt Mater Exp 7:3643–3653

    Article  Google Scholar 

  25. Deng X, Huang J, Sun Y, Liu K, Gao R, Cai W, Fu C (2016) Effect of processing parameters on the structural, electrical and magnetic properties of BFO thin film synthesized via RF magnetron sputtering. J Alloy Compd 684:510–515

    Article  Google Scholar 

  26. Wang X, Chen Z, Guo D, Zhang X, Wu Z, Li P, Tang W (2018) Optimizing the performance of a beta-Ga2O3 solar-blind UV photodetector by compromising between photoabsorption and electric field distribution. Opt Mater Exp 8:2918–2927

    Article  Google Scholar 

  27. Xu Y, An Z, Zhang L, Feng Q, Zhang J, Zhang C, Hao Y (2018) Solar blind deep ultraviolet β-Ga2O3 photodetectors grown on sapphire by the Mist-CVD method. Opt Mater Exp 8:2941–2947

    Article  Google Scholar 

  28. Zhang M, Xia Y, Wang L et al (2005) Effects of the grain size of CVD diamond films on the detector performance. J Mater Sci 40:5269–5272. https://doi.org/10.1007/s10853-005-0737-1

    Article  Google Scholar 

  29. Zhang Z, Tang Y, Chen J, Chen J (2016) Influence of low sputtering pressure on structural, electrical and optical properties of Al-doped zinc oxide thin films. Phys B 495:76–81

    Article  Google Scholar 

  30. Guo D, Wu Z, Li P, An Y, Liu H, Guo X, Yan H, Wang G, Sun C, Li L, Tang W (2014) Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology. Opt Mater Exp 4:1067–1076

    Article  Google Scholar 

  31. Nang TT, Okuda M, Matsushita T, Yohota S, Suzuki A (1976) Electrical and optical properties of GexSe1-x amorphous thin films. Jpn J Appl Phys 15:849–853

    Article  Google Scholar 

  32. Chen KY, Hsu CC, Yu HC et al (2018) The effect of oxygen vacancy concentration on indium gallium oxide solar blind photodetector. IEEE Trans Electron Devices 65:1817–1822

    Article  Google Scholar 

  33. Guo DY, Su YL, Shi HZ, Li PG, Zhao N, Ye JH, Wang SL, Liu AP, Chen ZW, Li CR, Tang WH (2018) Self-powered ultraviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/Sn:31Ga2O3 pn junction. ACS Nano 12:12827–12835

    Article  Google Scholar 

  34. An YH, Zhi YS, Cui W, Zhao XL, Wu ZP, Guo DY, Li PG, Tang WH (2017) Thickness tuning photoelectric properties of β-Ga2O3 thin film based photodetectors. J Nanosci Nanotechnol 17:9091–9094

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National 111 Center (Grant No. B12026) and National Natural Science Foundation of China (61604119, 11435010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunfu Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest. And the mentioned received funding in the acknowledgements did not lead to any conflicts of interest regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., An, Z., Xu, Y. et al. Improving the production of high-performance solar-blind β-Ga2O3 photodetectors by controlling the growth pressure. J Mater Sci 54, 10335–10345 (2019). https://doi.org/10.1007/s10853-019-03628-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03628-z

Navigation