Skip to main content
Log in

Spilt ring resonator-based THz massive MIMO antenna array modelling for future wireless network

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Terahertz communication is emerging as a promising technology for the future Six-Generation wireless communication network. To ensure sufficient coverage, a significant number of antenna elements are essential to overcome the path loss of THz signals. This work presents an illustrated link budget analysis for Terahertz communication, encompassing data rate, receive power, noise figure, and bandwidth. We introduce a single-element microstrip patch antenna designed over artificial substrates composed of 9 \(\times\) 9 split-ring resonators (SRRs) elements. Furthermore, the proposed dual-layer antenna is transformed into an antenna array, offering a high beam steering capability of approximately \(\pm 15^{\circ }\). Simulation results demonstrate that the proposed SRRs-based substrates enhance bandwidth, enable multi-band frequency operation, and reduce the required number of antenna elements for THz communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Data sharing not applicable to this article as no datasets were generated during the current study.

Code availability

Software application.

References

  1. Z.R. Hajiyat, A. Ismail, A. Sali, M.N. Hamidon, Antenna in 6G wireless communication system: specifications, challenges, and research directions. Optik 231, 166415 (2021)

    Article  ADS  Google Scholar 

  2. P. Jeyakumar, J. Anandpushparaj, P. Thanapal, S. Meenatchi, M. Dhamodaran, Terahertz micro-strip patch antenna design and modelling for 6G mobile communication. J. Electr. Eng. Technol. 18(3), 2253–2262 (2023)

    Article  Google Scholar 

  3. F. Sizov, Brief history of THz and IR technologies. Semicond. Phys. Quantum Electron. Optoelectron. 22(1), 67–79 (2019)

    Article  Google Scholar 

  4. M. Shalini et al., A compact antenna structure for circular polarized terahertz radiation. Optik 231, 166393 (2021)

    Article  ADS  Google Scholar 

  5. A. Sharma, G. Singh, Rectangular microstirp patch antenna design at THz frequency for short distance wireless communication systems. J. Infrared Millim. Terahertz Waves 30(1), 1–7 (2009)

    Article  Google Scholar 

  6. K. Tekbıyık, A.R. Ekti, G.K. Kurt, A. Görçin, Terahertz band communication systems: challenges, novelties and standardization efforts. Phys. Commun. 35, 100700 (2019)

    Article  Google Scholar 

  7. B. Singh, H. Rana, A. Verma, A. Duhan, M. Zayed, SRR loaded microstrip patch antenna for bluetooth, hiperlan/wlan and wimax, in 2016 3rd International Conference on Signal Processing and Integrated Networks (SPIN) (IEEE, 2016), p. 34–37

  8. I.F. Akyildiz, C. Han, S. Nie, Combating the distance problem in the millimeter wave and terahertz frequency bands. IEEE Commun. Mag. 56(6), 102–108 (2018)

    Article  Google Scholar 

  9. C. Han, Y. Chen, Propagation modeling for wireless communications in the terahertz band. IEEE Commun. Mag. 56(6), 96–101 (2018)

    Article  Google Scholar 

  10. P. Jeyakumar, A. Ramesh, S. Srinitha, V. Vishnu, P. Muthuchidambaranathan, Wideband hybrid precoding techniques for THz massive MIMO in 6G indoor network deployment. Telecommun. Syst. 79, 71–82 (2022)

    Article  Google Scholar 

  11. C.-H. Li, T.-Y. Chiu, 340-GHz low-cost and high-gain on-chip higher order mode dielectric resonator antenna for THz applications. IEEE Trans. Terahertz Sci. Technol. 7(3), 284–294 (2017)

    Article  ADS  Google Scholar 

  12. S. George, N. Vijayakumar, A. Masilamani, E.E. Nithila, N. Jothi, J. Relin Francis Raj, A survey on design issues, challenges, and applications of terahertz based 6g communication, in Intelligent Sustainable Systems: Proceedings of ICISS 2022 (2022), p. 551–558

  13. T. Kleine-Ostmann, T. Nagatsuma, A review on terahertz communications research. J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011)

    Article  Google Scholar 

  14. K.R. Jha, G. Singh, Terahertz planar antennas for future wireless communication: a technical review. Infrared Phys. Technol. 60, 71–80 (2013)

    Article  ADS  Google Scholar 

  15. S. George, N. Vijayakumar, Investigations of substrate and patch materials for sub-terahertz wireless applications scenario. J. Electron. Mater. 51(9), 5065–5073 (2022)

    Article  ADS  Google Scholar 

  16. A. Hocini, M. Temmar, D. Khedrouche, M. Zamani, Novel approach for the design and analysis of a terahertz microstrip patch antenna based on photonic crystals. Photonics Nanostruct. Fundam. Appl. 36, 100723 (2019)

    Article  Google Scholar 

  17. T. Xu, R. Xu, Y.-S. Lin, Tunable terahertz metamaterial using electrostatically electric split-ring resonator. Results Phys. 19, 103638 (2020)

    Article  Google Scholar 

  18. U. Keshwala, S. Rawat, K. Ray, Design and analysis of DNA shaped antenna for terahertz and sub-terahertz applications. Optik 232, 166512 (2021)

    Article  ADS  Google Scholar 

  19. A. Sondas, M.H. Ucar, Y.E. Erdemli, SRR-based substrates for microstrip antennas. In Mediterranean Microwave Symposium (MMS) (2008), p. 14–16

  20. M. Koutsoupidou, N. Uzunoglu, I.S. Karanasiou, Antennas on Metamaterial Substrates as Emitting Components for THz Biomedical Imaging (IEEE, 2012), p. 319–322

  21. P. Jeyakumar, E. Malar, N. Idnani, P. Muthuchidambaranathan, Large antenna array with hybrid beamforming system for 5G outdoor mobile broadband communication deployments. Wirel. Pers. Commun. 120, 2001–2027 (2021)

    Article  Google Scholar 

  22. U. Nissanov, G. Singh, P. Kumar, N. Kumar, High Gain Terahertz Microstrip Array Antenna for Future Generation Cellular Communication (IEEE, 2020), p. 1–6

  23. F. Kazemi, High q-factor compact and reconfigurable THz aperture antenna based on graphene loads for detecting breast cancer cells. Superlattices Microstruct. 153, 106865 (2021)

    Article  Google Scholar 

  24. A. Nejati, R.A. Sadeghzadeh, F. Geran, Effect of photonic crystal and frequency selective surface implementation on gain enhancement in the microstrip patch antenna at terahertz frequency. Phys. B Condens. Matter 449, 113–120 (2014)

    Article  ADS  Google Scholar 

  25. S. George, V. Nandalal, P. Jeyakumar, S.V. Babu et al., Implementation of FSS substrate on microstrip patch antenna for terahertz communication. J. Optoelectron. Adv. Mater. 24(July–August 2022), 338–346 (2022)

    Google Scholar 

  26. P. Jeyakumar, E. Malar, S. Srinitha, P. Muthuchidambaranathan, A. Ramesh, Hybrid beamforming in large-scale antenna array for 5G indoor communication network deployments. Wirel. Pers. Commun. 126(3), 2513–2532 (2022)

    Article  Google Scholar 

  27. K.R. Jha, G. Singh, Microstrip patch array antenna on photonic crystal substrate at terahertz frequency. Infrared Phys. Technol. 55(1), 32–39 (2012)

    Article  ADS  Google Scholar 

  28. F. Kazemi, Dual band compact fractal THz antenna based on CRLH-TL and graphene loads. Optik 206, 164369 (2020)

    Article  ADS  Google Scholar 

  29. J. Zyren, A. Petrick, Tutorial on basic link budget analysis. Appl. Note AN9804 Harris Semicond. 31, 1–8 (1998)

    Google Scholar 

  30. A. Guidotti, A. Vanelli-Coralli, A. Mengali, S. Cioni, Non-terrestrial networks: Link budget analysis, in ICC 2020-2020 IEEE International Conference on Communications (ICC) (IEEE, 2020), p. 1–7

  31. K. Rikkinen, P. Kyosti, M.E. Leinonen, M. Berg, A. Parssinen, Thz radio communication: link budget analysis toward 6G. IEEE Commun. Mag. 58(11), 22–27 (2020)

    Article  Google Scholar 

  32. N. Khalid, N.A. Abbasi, O.B. Akan, 300 ghz broadband transceiver design for low-thz band wireless communications in indoor internet of things, in 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (IEEE, 2017), p. 770–775

  33. T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, R.-P. Braun, Link budget analysis for terahertz fixed wireless links. IEEE Trans. Terahertz Sci. Technol. 2(2), 250–256 (2012)

    Article  ADS  Google Scholar 

  34. V. Petrov, A. Pyattaev, D. Moltchanov, Y. Koucheryavy, Terahertz Band Communications: Applications, Research Challenges, and Standardization Activities (IEEE, 2016), p. 183–190

  35. C.E. Shannon, A mathematical theory of communication. ACM Sigmob. Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  36. S. Rajagopal, S. Abu-Surra, Z. Pi, F. Khan, Antenna array design for multi-gbps mmwave mobile broadband communication, in 2011 IEEE Global Telecommunications Conference-GLOBECOM 2011 (IEEE, 2011), p. 1–6

  37. K.R. Jha, G. Singh, Analysis and design of enhanced directivity microstrip antenna at terahertz frequency by using electromagnetic bandgap material. Int. J. Numer. Model. Electron. Netw. Devices Fields 24(5), 410–424 (2011)

    Article  MATH  Google Scholar 

  38. L. Yang, X. Shi, K. Chen, K. Fu, B. Zhang, Analysis of photonic crystal and multi-frequency terahertz microstrip patch antenna. Phys. B Condens. Matter 431, 11–14 (2013)

    Article  ADS  Google Scholar 

Download references

Funding

The authors received no financial support for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvakumar George.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, S., Vijayakumar, N., Jeyakumar, P. et al. Spilt ring resonator-based THz massive MIMO antenna array modelling for future wireless network. Appl. Phys. A 129, 627 (2023). https://doi.org/10.1007/s00339-023-06880-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06880-y

Keywords

Navigation