Skip to main content
Log in

Facile synthesis and characterization of CdS thin films doped by yttrium atoms

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A facile preparation and structural, optical and electrical characterization of undoped and Y-doped CdS thin films are demonstrated through spray pyrolysis changing doping concentration of yttrium atoms in CdS structure. X-ray diffraction pattern displays that CdS samples have polycrystalline hexagonal phase and as they are doped by various amounts of Y atoms, a fluctuation is observed in the preferential orientation. Scanning electron microscopy results show that compact and smooth surface morphology in addition to a slight reduction in grain size are obtained with increasing Y-doping up to 5%. Transparency of CdS thin films are noticeably enhanced by doping of 1% Y atoms. However, further increase of Y-doping towards 5% causes less transparent CdS films due to deterioration of crystal quality. Tauc analysis indicates presence of two direct bandgaps for each sample owing to spin–orbit splitting of valence band of CdS. CdS films have bandgaps of 2.48 eV (Eg1) and 2.85 eV (Eg2). Whereas Eg1 value decreases to 2.46 for 5% Y-doping, Eg2 value increases to 2.92 eV for the same Y-doping concentration. Photoluminescence data show that an obvious red shift is observed for blue band regardless of Y-doping concentration. 3% Y-doped CdS thin films display the best carrier density of 4.37 × 1014 cm−3 and resistivity of 3.78 × 103 Ω.cm, which originate from substitutional incorporation of Y3+ ions at Cd2+ ions. Therefore, it can be stated that Y-doped CdS thin films exhibit better electrical and optical properties that are of vital importance in thin film-based solar cells as a window layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. H. Wang, Y. Guo, H. Hao, H. Bian, H. Aubin, Y. Wei, H. Li, T. Liu, A. Degiron, H. Wang, A.C.S. Appl, Mater. Interfaces 13, 56476 (2021). https://doi.org/10.1021/acsami.1c17152

    Article  Google Scholar 

  2. J. Meza-Arroyo, K.C.S. Reddy, M.G.S. Rao, F. Garibay-Martínez, M.S. de Urquijo-Ventura, R. Ramírez-Bon, Semicond. Sci. Technol. 36, 045015 (2021). https://doi.org/10.1088/1361-6641/abe01c

    Article  ADS  Google Scholar 

  3. Q. Bao, W. Li, P. Xu, M. Zhang, D. Dai, P. Wang, X. Guo, L. Tong, Light Sci. Appl. 9, 42 (2020). https://doi.org/10.1038/s41377-020-0277-0

    Article  ADS  Google Scholar 

  4. A. Morales-Acevedo, Sol. Energy 80, 675 (2006). https://doi.org/10.1016/j.solener.2005.10.008

    Article  ADS  Google Scholar 

  5. M.S. Rana, M.M. Islam, M. Julkarnain, Sol. Energy 226, 272 (2021). https://doi.org/10.1016/j.solener.2021.08.035

    Article  ADS  Google Scholar 

  6. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, Prog. Photovolt: Res. Appl. 16, 235 (2008). https://doi.org/10.1002/pip.822

    Article  Google Scholar 

  7. S. Yılmaz, A. Ünverdi, M. Tomakin, İ Polat, E. Bacaksız, Optik 185, 256 (2019). https://doi.org/10.1016/j.ijleo.2019.03.156

    Article  ADS  Google Scholar 

  8. I.M. Dharmadasa, A.E. Alam, 15, 9510 (2022) https://doi.org/10.3390/en15249510

  9. K. Onomoto, K. Takeda, N. Iwata, K. Adachi, T. Kikitsu, Y. Ishida, D. Hashizume, M. Tanaka, H. Kawakami, Y.-J. Pu, A.C.S. Appl, Nano Mater. 5, 3756 (2022). https://doi.org/10.1021/acsanm.1c04403

    Article  Google Scholar 

  10. A.N. Setayesh, S. Moradi, H. Sedghi, J. Nanopart. Res. 25, 4 (2023). https://doi.org/10.1007/s11051-022-05653-7

    Article  Google Scholar 

  11. S. Yılmaz, I. Polat, M.A. Olgar, M. Tomakin, S.B. Töreli, E. Bacaksız, J. Mater. Sci: Mater. Electron. 28, 3191 (2017). https://doi.org/10.1007/s10854-016-5908-0

    Article  Google Scholar 

  12. S. Yılmaz, İ Polat, M. Tomakin, E. Bacaksız, J. Mater. Sci: Mater. Electron. 30, 5662 (2019). https://doi.org/10.1007/s10854-019-00859-3

    Article  Google Scholar 

  13. M. Shkir, T. Alshahrani, J. Phys. Chem. Solids 177, 111282 (2023). https://doi.org/10.1016/j.jpcs.2023.111282

    Article  Google Scholar 

  14. A.B.G. Trabelsi, K.V. Chandekar, F.H. Alkallas, I.M. Ashraf, J. Hakami, M. Shkir, A. Kaushik, S. AlFaify, J. Mater. Res. Technol. 21, 3982 (2022). https://doi.org/10.1016/j.jmrt.2022.11.002

    Article  Google Scholar 

  15. H. Albargi, Z.R. Khan, R. Marnadu, H.Y. Ammar, H. Algadi, A. Umar, I.M. Ashraf, M. Shkir, J. King Saud Univ. Sci. 33, 101638 (2021). https://doi.org/10.1016/j.jksus.2021.101638

    Article  Google Scholar 

  16. M. Shkir, K.V. Chandekar, A. Khan, A.M. El-Toni, I.M. Ashraf, M. Benghanem, S.F. Adil, A.A. Ansari, H. Ghaithan, S. AlFaify, Mater. Chem. Phys. 255, 123615 (2020). https://doi.org/10.1016/j.matchemphys.2020.123615

    Article  Google Scholar 

  17. M.D. Devi, A.V. Juliet, K.H. Prasad, T. Alshahrani, A.M. Alshehri, M. Shkir, S. AIFaify, Appl. Phys. A 126, 960 (2022). https://doi.org/10.1007/s00339-020-04067-3

    Article  ADS  Google Scholar 

  18. I.M. Ashraf, M.T. Khan, K. Hariprasad, S. Valanarasu, T. Alshahrani, A. Almohammedi, H. Algarni, M. Shkir, S. AlFaify, Mater. Lett. 285, 129174 (2021). https://doi.org/10.1016/j.matlet.2020.129174

    Article  Google Scholar 

  19. M. Shkir, Z.R. Khan, A.S. Alshammari, M. Gandouzi, I.M. Ashraf, S. AlFaify, Surf. Interfaces 24, 101063 (2021). https://doi.org/10.1016/j.surfin.2021.101063

    Article  Google Scholar 

  20. Z.R. Khan, M. Shkir, A.S. Alshammari, I.M. Ashraf, S. AlFaify, J. Inorg. Organomet. Polym. Mater. 31, 3880 (2021). https://doi.org/10.1007/s10904-021-02004-2

    Article  Google Scholar 

  21. M. Shkir, Z.R. Khanb, K.V. Chandekar, T. Alshahrani, I.M. Ashraf, A. Khanf, R. Marnadug, R.A. Zargar, P. Mohanraj, M.S. Revathy, M.A. Manthrammel, M.A. Sayed, H.E. Ali, I.S. Yahia, E.S. Yousef, H. Algarni, S. AlFaify, M.F. Sana, Sens. Actuator A Phys. 331, 112890 (2021). https://doi.org/10.1016/j.sna.2021.112890

    Article  Google Scholar 

  22. L. Saravanan, R. Jayavel, A. Pandurangan, J.-H. Liu, H.-Y. Miao, Powder Technol. 266, 407 (2014). https://doi.org/10.1016/j.powtec.2014.06.051

    Article  Google Scholar 

  23. N. Kaur, S.K. Sharma, D.Y. Kim, N. Singh, Physica B 500, 179 (2016). https://doi.org/10.1016/j.physb.2016.08.005

    Article  ADS  Google Scholar 

  24. N. Üzar, G. Algün, N. Akçay, D. Akcan, L. Arda, J. Mater. Sci: Mater. Electron. 28, 11861 (2017). https://doi.org/10.1007/s10854-017-6994-3

    Article  Google Scholar 

  25. A. Bashir, A. Majeed, S. Naseem, A.S. Bhatti, Bull. Mater. Sci. 44, 95 (2021). https://doi.org/10.1007/s12034-021-02391-9

    Article  Google Scholar 

  26. N. Suganthi, K. Pushpanathan, Surf. Rev. Lett. 25, 1850063 (2018). https://doi.org/10.1142/S0218625X18500634

    Article  ADS  Google Scholar 

  27. J. Hakami, J. Alloys Compd. 924, 166577 (2022). https://doi.org/10.1016/j.jallcom.2022.166577

    Article  Google Scholar 

  28. M. Xie, W. Zhu, K.M. Yu, Z. Zhu, G. Wang, J. Alloys Compd. 776, 259 (2019). https://doi.org/10.1016/j.jallcom.2018.10.288

    Article  Google Scholar 

  29. S. Sharma, I. Singh, Natasha, A. Kapoor, Mater. Sci. Semicond. Process. 56, 174 (2016). https://doi.org/10.1016/j.mssp.2016.08.008

    Article  Google Scholar 

  30. V.D. Novruzov, E.F. Keskenler, M. Tomakin, S. Kahraman, O. Gorur, Appl. Surf. Sci. 280, 318 (2013)

    Article  ADS  Google Scholar 

  31. S. Yılmaz, İ Polat, M. Tomakin, T. Küçükömeroğlu, S.B. Töreli, E. Bacaksız, Appl. Phys. A 124, 502 (2018). https://doi.org/10.1007/s00339-018-1922-9

    Article  ADS  Google Scholar 

  32. T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, Colloids Surf. A 532, 363 (2017). https://doi.org/10.1016/j.colsurfa.2017.04.065

    Article  Google Scholar 

  33. A.F. Qasrawi, T.Y. Abed, Thin Solid Films 679, 72 (2019). https://doi.org/10.1016/j.tsf.2019.04.016

    Article  ADS  Google Scholar 

  34. S. Ahmed, M.S.I. Sarker, M.M. Rahman, M. Kamruzzaman, M.K.R. Khan, Heliyon 4, e00740 (2018). https://doi.org/10.1016/j.heliyon.2018.e00740

    Article  Google Scholar 

  35. V. Ganesh, Y. Bitla, L. Haritha, M. Shkir, S. AlFaify, J. Sol-Gel Sci. Technol. 97, 697 (2021). https://doi.org/10.1007/s10971-021-05471-8

    Article  Google Scholar 

  36. M. Cardona, K.L. Shaklee, F.H. Pollak, Phys. Rev. 54, 696 (1967)

    Article  ADS  Google Scholar 

  37. P. Wang, R. Zhao, Z. Li, T. Yang, M. Zhang, Cryst. Eng. Comm. 18, 2607 (2016). https://doi.org/10.1039/c6ce00143b

    Article  Google Scholar 

  38. S. Yılmaz, Appl. Surf. Sci. 357, 873 (2015). https://doi.org/10.1016/j.apsusc.2015.09.098

    Article  ADS  Google Scholar 

  39. S. Yılmaz, Y. Atasoy, M. Tomakin, E. Bacaksız, Superlattice. Microst. 88, 299 (2015). https://doi.org/10.1016/j.spmi.2015.09.021

    Article  ADS  Google Scholar 

  40. Z.K. Heiba, M.B. Mohamed, N.Y. Mostafa, Appl. Phys. A 125, 132 (2019). https://doi.org/10.1007/s00339-019-2428-9

    Article  ADS  Google Scholar 

  41. B.A. Ahmed, I.H. Shallal, F.I.M. AL-Attar, J. Phys. Conf. Ser. 1032, 012022 (2018). https://doi.org/10.1088/1742-6596/1032/1/012022

    Article  Google Scholar 

  42. M.R. Balboul, A. Abdel-Galil, I.S. Yahia, A. Sharaf, Adv. Mater. Sci. Eng. 2016, 1 (2016). https://doi.org/10.1155/2016/3183909

    Article  Google Scholar 

  43. R.S. Muller, B.G. Watkins, Proc. IEEE 52, 425 (1964). https://doi.org/10.1109/PROC.1964.2952

    Article  Google Scholar 

  44. M. Kellegöz, H. Çako, S. Uzkalan, S. Köse, Appl. Phys. A 128, 90 (2022). https://doi.org/10.1007/s00339-021-05227-9

    Article  ADS  Google Scholar 

  45. A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, H. Erguig, J. Alloys Compd. 557, 53 (2013). https://doi.org/10.1016/j.jallcom.2012.12.136

    Article  Google Scholar 

  46. M. Thirumoorthi, J.T.J. Prakash, Superlattice. Microst. 85, 237 (2015). https://doi.org/10.1016/j.spmi.2015.05.005

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work. Materials synthesis was performed by IP. All the characterizations were carried out by MT. The interpretations of results were realized by SY and EB and the manuscript was written by SY.

Corresponding author

Correspondence to S. Yılmaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, S., Tomakin, M., Polat, İ. et al. Facile synthesis and characterization of CdS thin films doped by yttrium atoms. Appl. Phys. A 129, 579 (2023). https://doi.org/10.1007/s00339-023-06869-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06869-7

Keywords

Navigation