Skip to main content
Log in

An effect of precursor concentrations on the photodetection capabilities of CdS thin films for high-efficiency visible-light photodetector applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Photo-conducting CdS films were coated on glass at 450 °C using cadmium chloride and thiourea as Cd and S sources, respectively, with different concentrations. The sprayed CdS films are crystallized in the hexagonal structure and orienting along (0 0 2) plane with good adherence. All the films have high optical absorption in the visible region showing optical bandgap values in the range of 2.39–2.43 eV. The variation of precursor alters the surface morphology of the films. The formed grains are uniformly spread over the substrate and highly agglomerated at 0.15 M concentration. Band to band emission and defect-related emission are reported using photoluminescence (PL) measurements. The CdS device shows relatively high photosensitivity of 0.4 A/W, detectivity of 8.46 × 1010 Jones, external quantum efficiency (EQE of 140%) with a rise time about 0.2 s and decay time about 0.3 s. These results propose that the CdS thin films are potential candidates for the visible photo-detector applications prepared using an easy and low-cost fabrication method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Vrijen, E. Yablonovitch, A spin-coherent semiconductor photo-detector for quantum communication. Phys. E 10(4), 569–575 (2001)

    Google Scholar 

  2. R. Hattori, M. Hironaka, Semiconductor photodetector device, Google Patents, (1991).

  3. P.H. Shen, M.R. Stead, M.A. Taysing-Lara, J. Pamulapati, W.C. Ruff, B.L. Stann, P.N. Uppal, Interdigitated Finger Semiconductor Photodetector for Optoelectronic Mixing, Infrared Detectors and Focal Plane Arrays VI (International Society for Optics and Photonics, Bellingham, 2000), pp. 426–435

    Google Scholar 

  4. M. Tsuji, Ultraspeed low-voltage drive avalanche multiplication type semiconductor photodetector, Google Patents (2002).

  5. Z. Qi, T. Yang, D. Li, H. Li, X. Wang, X. Zhang, F. Li, W. Zheng, P. Fan, X. Zhuang, A. Pan, High-responsivity two-dimensional p-PbI2/n-WS2 vertical heterostructure photodetectors enhanced by photogating effect. Materials Horizons 6, 1474–1480 (2019)

    Google Scholar 

  6. F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4(12), 839 (2009)

    ADS  Google Scholar 

  7. S. Najmaei, M. Dubey, 2d material photo-detector gain and responsivity control and enhancement through induced interface trap doping, Google Patents, (2019).

  8. P. Gant, P. Huang, D.P. de Lara, D. Guo, R. Frisenda, A. Castellanos-Gomez, A strain tunable single-layer MoS2 photodetector. Mater. Today 27, 8–13 (2019)

    Google Scholar 

  9. S. Edwards, T. Oder, Characterization of Ultraviolet ZnO Photodetector (Bulletin of the American Physical Society, Boston, 2019)

    Google Scholar 

  10. M. Long, Y. Wang, P. Wang, X. Zhou, H. Xia, C. Luo, S. Huang, G. Zhang, H. Yan, Z. Fan, X. Wu, X. Chen, W. Lu, W. Hu, Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13(2), 2511–2519 (2019)

    Google Scholar 

  11. L.H. Zeng, D. Wu, S.H. Lin, C. Xie, H.Y. Yuan, W. Lu, S.P. Lau, Y. Chai, L.B. Luo, Z.J. Li, Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Func. Mater. 29(1), 1806878 (2019)

    Google Scholar 

  12. F. Cao, L. Meng, M. Wang, W. Tian, L. Li, Gradient energy band driven high-performance self-powered perovskite/CdS photodetector. Adv. Mater. 31(12), 1806725 (2019)

    Google Scholar 

  13. D. Wu, Y. Jiang, Y. Zhang, Y. Yu, Z. Zhu, X. Lan, F. Li, C. Wu, L. Wang, L. Luo, Self-powered and fast-speed photodetectors based on CdS: Ga nanoribbon/Au Schottky diodes. J. Mater. Chem. 22(43), 23272–23276 (2012)

    Google Scholar 

  14. M. Shuai, Y. Lingmin, C. Lei, L. Chun, Y. Mingli, F. Xinhui, Resistive-type UV–visible photodetector based on CdS NWs /ZnO nanowalls heterostructure fabricated using in-situ synthesis method. J. Alloy. Compd. 827, 154090 (2020)

    Google Scholar 

  15. K. Deng, L. Li, CdS Nanoscale Photodetectors. Adv. Mater. 26(17), 2619–2635 (2014)

    Google Scholar 

  16. Y. Ye, L. Dai, X. Wen, P. Wu, R. Pen, G. Qin, High-Performance Single CdS Nanobelt Metal-Semiconductor Field-Effect Transistor-Based Photodetectors. ACS Appl. Mater. Interfaces. 2(10), 2724–2727 (2010)

    Google Scholar 

  17. L. Li, P. Wu, X. Fang, T. Zhai, L. Dai, M. Liao, Y. Koide, H. Wang, Y. Bando, D. Golberg, Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors. Adv. Mater. 22(29), 3161–3165 (2010)

    Google Scholar 

  18. L. Li, Z. Lou, G. Shen, Hierarchical CdS Nanowires Based Rigid and Flexible Photodetectors with Ultrahigh Sensitivity. ACS Appl. Mater. Interfaces. 7(42), 23507–23514 (2015)

    Google Scholar 

  19. M. Mahdi, J. Hassan, S. Ng, Z. Hassan, N.M. Ahmed, Synthesis and characterization of single-crystal CdS nanosheet for high-speed photodetection. Phys. E 44(7–8), 1716–1721 (2012)

    Google Scholar 

  20. J. Jie, W. Zhang, Y. Jiang, X. Meng, Y. Li, S. Lee, Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett. 6(9), 1887–1892 (2006)

    ADS  Google Scholar 

  21. Z. Lou, L. Li, G. Shen, Ultraviolet/visible photodetectors with ultrafast, high photosensitivity based on 1D ZnS/CdS heterostructures. Nanoscale 8(9), 5219–5225 (2016)

    ADS  Google Scholar 

  22. L. Zhu, C. Li, Y. Li, C. Feng, F. Li, D. Zhang, Z. Chen, S. Wen, S. Ruan, Visible-light photodetector with enhanced performance based on a ZnO@ CdS heterostructure. J. Mater. Chem. C 3(10), 2231–2236 (2015)

    Google Scholar 

  23. X.-X. Yu, H. Yin, H.-X. Li, W. Zhang, H. Zhao, C. Li, M.-Q. Zhu, Piezo-phototronic effect modulated self-powered UV/visible/near-infrared photodetectors based on CdS: P3HT microwires. Nano Energy 34, 155–163 (2017)

    Google Scholar 

  24. B. Mereu, G. Sarau, E. Pentia, V. Draghici, M. Lisca, T. Botila, L. Pintilie, Field-effect transistor based on nanometric thin CdS films. Mater. Sci. Eng., B 109(1–3), 260–263 (2004)

    Google Scholar 

  25. R. Ma, L. Dai, G. Qin, Enhancement-mode metal-semiconductor field-effect transistors based on single n-Cd S nanowires. Appl. Phys. Lett. 90(9), 093109 (2007)

    ADS  Google Scholar 

  26. Z. Qian, H.-J. Bai, G.-L. Wang, J.-J. Xu, H.-Y. Chen, A photoelectrochemical sensor based on CdS-polyamidoamine nano-composite film for cell capture and detection. Biosens. Bioelectron. 25(9), 2045–2050 (2010)

    Google Scholar 

  27. L. Yadava, R. Verma, R. Dwivedi, Sensing properties of CdS-doped tin oxide thick film gas sensor. Sens. Actuators B Chem. 144(1), 37–42 (2010)

    Google Scholar 

  28. Y.L. Lee, Y.S. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Func. Mater. 19(4), 604–609 (2009)

    Google Scholar 

  29. S. Bhushan, D. Thakur, Photoconductivity of chemically deposited rare-earth-doped CdS films. J. Mater. Sci. Mater. Electron. 3(1), 35–40 (1992)

    Google Scholar 

  30. M.A. Mahdi, J.J. Hassan, N.M. Ahmed, S.S. Ng, Z. Hassan, Growth and characterization of CdS single-crystalline micro-rod photodetector. Superlattices Microstruct. 54, 137–145 (2013)

    ADS  Google Scholar 

  31. D. Wu, Y. Jiang, S. Li, F. Li, J. Li, X. Lan, Y. Zhang, C. Wu, L. Luo, J. Jie, Construction of high-quality CdS: Ga nanoribbon/silicon heterojunctions and their nano-optoelectronic applications. Nanotechnology 22(40), 405201 (2011)

    Google Scholar 

  32. M. Husham, Z. Hassan, A.M. Selman, N.K. Allam, Microwave-assisted chemical bath deposition of nanocrystalline CdS thin films with superior photodetection characteristics. Sens. Actuators A 230, 9–16 (2015)

    Google Scholar 

  33. M. Waldiya, R. Narasimman, D. Bhagat, D. Vankhade, I. Mukhopadhyay, Nanoparticulate CdS 2D array by chemical bath deposition: Characterization and optoelectronic study. Mater. Chem. Phys. 226, 26–33 (2019)

    Google Scholar 

  34. S. Munde, N. Shinde, P. Khanzode, M. Budrukkar, P. Lahane, J. Dadge, S. Jejurikar, M. Mahabole, R. Khairnar, K. Bogle, Nano-crystalline CdS thick films: a highly sensitive photo-detector. Mater. Res. Express 5(6), 066203 (2018)

    ADS  Google Scholar 

  35. M. Shkir, I. Ashraf, S. AlFaify, A.M. El-Toni, M. Ahmed, A. Khan, A noticeable effect of Pr doping on key optoelectrical properties of CdS thin films prepared using spray pyrolysis technique for high-performance photodetector applications. Ceram. Int. 46(4), 4652–4663 (2020)

    Google Scholar 

  36. M. Shkir, I. Ashraf, A. Khan, M.T. Khan, A.M. El-Toni, S. AlFaify, A facile spray pyrolysis fabrication of Sm: CdS thin films for high-performance photodetector applications. Sens. Actuators A 306, 111952 (2020)

    Google Scholar 

  37. M. Shkir, I.M. Ashraf, K.V. Chandekar, I.S. Yahia, A. Khan, H. Algarni, S. AlFaify, A significant enhancement in visible-light photodetection properties of chemical spray pyrolysis fabricated CdS thin films by novel Eu doping concentrations. Sens. Actuators A 301, 111749 (2020)

    Google Scholar 

  38. L. Wenyi, C. Xun, C. Qiulong, Z. Zhibin, Influence of growth process on the structural, optical and electrical properties of CBD-CdS films. Mater. Lett. 59(1), 1–5 (2005)

    Google Scholar 

  39. F. Atay, V. Bilgin, I. Akyuz, S. Kose, The effect of In doping on some physical properties of CdS films. Mater. Sci. Semicond. Process. 6(4), 197–203 (2003)

    Google Scholar 

  40. P.J. Sebastian, p-type CdS thin films formed by in situ Cu doping in the chemical bath. Appl. Phys. Lett. 62(23), 2956–2958 (1993)

    ADS  Google Scholar 

  41. R. Bairy, A. Jayarama, G.K. Shivakumar, S.D. Kulkarni, S.R. Maidur, P.S. Patil, Effect of Aluminium doping on photoluminescence and third-order nonlinear optical properties of nanostructured CdS thin films for photonic device applications. Phys. B 555, 145–151 (2019)

    ADS  Google Scholar 

  42. L.A. González, I. Carreón-Moncada, M.A. Quevedo-López, Negative differential resistance as effect of Zn doping of chemically processed CdS thin film transistors. Mater. Lett. 192, 161–164 (2017)

    Google Scholar 

  43. M. Paulraj, S. Ramkumar, K.P. Varkey, K.P. Vijayakumar, C. Sudha Kartha, K.G.M. Nair, Characterizations of undoped and Cu doped CdS thin films using photothermal and other techniques. Phys. Status Solidi (a) 202(3), 425–434 (2005)

    ADS  Google Scholar 

  44. S. Chander, M.S. Dhaka, Optical and structural constants of CdS thin films grown by electron beam vacuum evaporation for solar cells. Thin Solid Films 638, 179–188 (2017)

    ADS  Google Scholar 

  45. M. Shkir, M. Anis, S. Shafik, M.A. Manthrammel, M.A. Sayeed, M.S. Hamdy, S. AlFaify, An effect of Zn content doping on upto-third order nonlinear characteristics of nanostructured CdS thin films fabricated through spray pyrolysis for optoelectronics. Phys. E 118, 113955 (2020)

    Google Scholar 

  46. P. Parameshwari, K.G. Naik, Effect of Cd/S Molar Ratio on the Optical and Electrical Properties of Spray Deposited CdS Thin Films, Physics of Semiconductor Devices (Springer, Berlin, 2014), pp. 347–349

    Google Scholar 

  47. S. Yılmaz, Y. Atasoy, M. Tomakin, E. Bacaksız, Comparative studies of CdS, CdS:Al, CdS: Na and CdS:(Al–Na) thin films prepared by spray pyrolysis. Superlattices Microstruct. 88, 299–307 (2015)

    ADS  Google Scholar 

  48. V. Senthamilselvi, K. Saravanakumar, N.J. Begum, R. Anandhi, A. Ravichandran, B. Sakthivel, K. Ravichandran, Photovoltaic properties of nanocrystalline CdS films deposited by SILAR and CBD techniques—a comparative study. J. Mater. Sci. Mater. Electron. 23(1), 302–308 (2012)

    Google Scholar 

  49. K. Ravichandran, P. Philominathan, Investigations on microstructural and optical properties of CdS films fabricated by a low-cost, simplified spray technique using perfume atomizer for solar cell applications. Sol. Energy 82(11), 1062–1066 (2008)

    ADS  Google Scholar 

  50. S. Gosavi, C. Nikam, A. Shelke, A. Patil, S.-W. Ryu, J. Bhat, N. Deshpande, Chemical synthesis of porous web-structured CdS thin films for photosensor applications. Mater. Chem. Phys. 160, 244–250 (2015)

    Google Scholar 

  51. A.A. Ziabari, F. Ghodsi, Effects of the Cd: Zn: S molar ratio and heat treatment on the optical and photoluminescence properties of nanocrystalline CdZnS thin films. Mater. Sci. Semicond. Process. 16(6), 1629–1636 (2013)

    Google Scholar 

  52. K.A. Aly, N. Khalil, Y. Algamal, Q.M. Saleem, Lattice strain estimation for CoAl2O4 nano particles using Williamson-Hall analysis. J. Alloy. Compd. 676, 606–612 (2016)

    Google Scholar 

  53. N. Anitha, M. Anitha, J. Raj Mohamed, S. Valanarasu, L. Amalraj, Influence of tin precursor concentration on physical properties of nebulized spray deposited tin disulfide thin films. J. Asian Ceram. Soc. 6(2), 121–131 (2018)

    Google Scholar 

  54. S. AlFaify, L. Haritha, M.A. Manthrammel, V. Ganesh, K.V. Chandekar, S.S. Shaikh, M. Shkir, Fabrication and characterization of Sn:CdS films for optical-nonlinear-limiting applications. Opt. Laser Technol. 126, 106122 (2020)

    Google Scholar 

  55. H. Kumar, S. Kumar, Indium sulfide based metal-semiconductor-metal ultraviolet-visible photodetector. Sens. Actuators A 299, 111643 (2019)

    Google Scholar 

  56. M.S. Mahdi, K. Ibrahim, A. Hmood, N.M. Ahmed, S.A. Azzez, F.I. Mustafa, A highly sensitive flexible SnS thin film photodetector in the ultraviolet to near infrared prepared by chemical bath deposition. RSC Adv. 6(116), 114980–114988 (2016)

    Google Scholar 

  57. M. Husham, Z. Hassan, M. Mahdi, A.M. Selman, N.M. Ahmed, Fabrication and characterization of nanocrystalline CdS thin film-based optical sensor grown via microwave-assisted chemical bath deposition. Superlattices Microstruct. 67, 8–16 (2014)

    ADS  Google Scholar 

  58. K. Wilson, M.B. Ahamed, Influence of bath temperature on surface modification and optoelectronic properties of chemical bath deposited CdS thin film nanostructures. Mater. Sci. Eng. B 251, 114444 (2019)

    Google Scholar 

  59. N. Saxena, T. Kalsi, P. Uttam, P. Kumar, Morphological evolution in nanocrystalline CdS thin films from flowers to salt rock like structures. Opt. Mater. 84, 625–630 (2018)

    ADS  Google Scholar 

  60. R. Khalfi, D. Talantikite-Touati, A. Tounsi, H. Merzouk, Effect of deposition time on structural and optical properties of ZnSe thin films grown by CBD method. Opt. Mater. 106, 109989 (2020)

    Google Scholar 

  61. T.S. Reddy, M.S. Kumar, Co-evaporated SnS thin films for visible light photodetector applications. RSC Adv. 6(98), 95680–95692 (2016)

    Google Scholar 

  62. M. Nair, P. Nair, Simplified chemical deposition technique for good quality SnS thin films. Semicond. Sci. Technol. 6(2), 132 (1991)

    ADS  Google Scholar 

  63. M. Shkir, Z.R. Khan, M. Anis, S.S. Shaikh, S. AlFaify, A comprehensive study of opto-electrical and nonlinear properties of Cu@CdS thin films for optoelectronics. Chin. J. Phys. 63, 51–62 (2020)

    Google Scholar 

  64. M. Husham, Z. Hassan, A.M. Selman, Synthesis and characterization of nanocrystalline CdS thin films for highly photosensitive self-powered photodetector. Eur. Phys. J. Appl. Phys. 74(1), 10101 (2016)

    ADS  Google Scholar 

  65. M. Tan, C. Hu, Y. Lan, J. Khan, H. Deng, X. Yang, P. Wang, X. Yu, J. Lai, H. Song, 2D lead dihalides for high-performance ultraviolet photodetectors and their detection mechanism investigation. Small 13(47), 1702024 (2017)

    Google Scholar 

  66. M. Zhong, L. Huang, H.-X. Deng, X. Wang, B. Li, Z. Wei, J. Li, Flexible photodetectors based on phase dependent PbI 2 single crystals. J. Mater. Chem. C 4(27), 6492–6499 (2016)

    Google Scholar 

  67. Q. An, X. Meng, P. Sun, High-performance fully nanostructured photodetector with single-crystalline CdS Nanotubes as active layer and very long ag nanowires as transparent electrodes. ACS Appl. Mater. Interfaces. 7(41), 22941–22952 (2015)

    Google Scholar 

  68. N.I. Najm, H.K. Hassun, B. KH al-Maiyaly, B.H. Hussein, A.H. Shaban, Highly selective CdS: Ag heterojunction for photodetector applications, in AIP Conference Proceedings, AIP Publishing (2019), p. 020031.

  69. M. Shkir, I.M. Ashraf, S. AlFaify, A.M. El-Toni, M. Ahmed, A. Khan, A noticeable effect of Pr doping on key optoelectrical properties of CdS thin films prepared using spray pyrolysis technique for high-performance photodetector applications. Ceram. Int. 46, 4652–4653 (2019)

    Google Scholar 

  70. M. Shkir, I.M. Ashraf, K.V. Chandekar, I.S. Yahia, A. Khan, H. Algarni, S. AlFaify, A significant enhancement in visible-light photodetection properties of chemical spray pyrolysis fabricated CdS thin films by novel Eu doping concentrations. Sens. Actuators A Phys. 111749, 301 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors extend their sincere appreciation to the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University for funding this research through the Fast-track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vimala Juliet.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, M.D., Juliet, A.V., Hari Prasad, K. et al. An effect of precursor concentrations on the photodetection capabilities of CdS thin films for high-efficiency visible-light photodetector applications. Appl. Phys. A 126, 960 (2020). https://doi.org/10.1007/s00339-020-04067-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04067-3

Keywords

Navigation