Skip to main content
Log in

Selective adsorption study of Lu(III) on phosphorylated ZIF-8-derived nitrogen-doped porous carbon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Highly ordered ZIF-8-derived carbon material NPC@ZnO was obtained by high-temperature pyrolysis under N2 atmosphere using ZIF-8 as a sacrificial template. The P-NPC@ZnO was successfully produced by surface modification with phosphoric acid treatment and the introduction of P elements. The adsorption performance of P-NPC@ZnO and control NPC@ZnO on Lu3+ was investigated using lutetium(III) as the adsorbent. The successful preparation of the materials was confirmed by FT-IR, XRD, SEM, TGA, BET, Raman and XPS characterization methods, and the adsorption type and mechanism of the adsorbent materials were analyzed, and finally the regenerative use performance as well as the selective performance of the adsorbents were investigated. The results showed that the adsorption performance of P-NPC@ZnO material for Lu3+ was remarkable under the optimal conditions, and the maximum adsorption amount could reach 230.21 mg g−1, which was twice as much as that of NPC@ZnO material. The experimental data were fitted to show that the rate-limiting step is controlled by surface adsorption, and lutetium(III) forms a single molecular layer adsorption with the adsorption sites on the surface of the adsorbent material. The P-NPC@ZnO material has good stability and regeneration performance and is selective for lutetium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No additional data are available.

References

  1. I. Anastopoulos, A. Bhatnagar, E.C. Lima, Adsorption of rare earth metals: a review of recent literature [J]. J. Mol. Liq. 221, 954–962 (2016)

    Google Scholar 

  2. Y. Tao, L. Shen, C. Feng et al., Distribution of rare earth elements (REEs) and their roles in plant growth: a review [J]. Environ. Pollut. 298, 118540 (2022)

    Google Scholar 

  3. H. Minowa, M. Ebihara, Separation of rare earth elements from scandium by extraction chromatography [J]. Anal. Chim. Acta 498(1–2), 25–37 (2003)

    Google Scholar 

  4. N. Freslon, G. Bayon, D. Birot et al., Determination of rare earth elements and other trace elements (Y, Mn Co, Cr) in seawater using Tm addition and Mg(OH)2 co-precipitation [J]. Talanta 85(1), 582–587 (2011)

    Google Scholar 

  5. T. Arai, Y. Wei, M. Kumagai et al., Separation of rare earths in nitric acid medium by a novel silica-based pyridinium anion exchange resin [J]. J. Alloy. Compd. 408–412, 1008–1012 (2006)

    Google Scholar 

  6. I. Duru, D. Ege, A.R. Kamali, Graphene oxides for removal of heavy and precious metals from wastewater [J]. J. Mater. Sci. 51(13), 6097–6116 (2016)

    ADS  Google Scholar 

  7. Y. Zhu, Y. Zheng et al., A simple approach to fabricate granular adsorbent for adsorption of rare elements [J]. Int. J. Biol. Macromol. 72, 410–420 (2015)

    Google Scholar 

  8. C. Cardoso, J.C. Almeida, C.B. Lopes et al., Recovery of rare earth elements by carbon-based nanomaterials—a review [J]. Nanomaterials 9(6), 814 (2019)

    Google Scholar 

  9. H. Xu, Y. Luo, P. Wang et al., Removal of thallium in water/wastewater: a review [J]. Water Res. 165(11), 114981 (2019)

    Google Scholar 

  10. R.M. Jiménez, S. Almazán et al., Adsorption of 177Lu from water by using synthetic hydroxyapatite [J]. Water Air Soil Pollut. 232, 394 (2021)

    ADS  Google Scholar 

  11. Y. Wang, L. Chen, Y. Yan et al., Separation of adjacent heavy rare earth Lutetium (III) and Ytterbium (III) by task-specific ionic liquid Cyphos IL 104 embedded polymer inclusion membrane [J]. J. Membr. Sci. 610, 118263 (2020)

    Google Scholar 

  12. S. Ryu, C. Fonseka, G. Naidu et al., Recovery of rare earth elements (Lu, Y) by adsorption using functionalized SBA-15 and MIL-101 (Cr) [J]. Chemosphere 281, 130869 (2021)

    ADS  Google Scholar 

  13. M. Li, Z. Ji, G. Sheng et al., Scavenging mechanism of rare earth metal ions in water by graphene oxide [J]. J. Mol. Liq. 322, 114940 (2021)

    Google Scholar 

  14. L. Guo, Y. Liu, J. Dou et al., Highly efficient removal of Eu3+ ions using carbon nanotubes-based polymer composites synthesized from the combination of Diels-Alder and multicomponent reactions [J]. J. Mol. Liq. 308, 112964 (2020)

    Google Scholar 

  15. Z. Wang, A.T. Brown, K. Tan et al., Selective extraction of thorium from rare earth elements using wrinkled mesoporous carbon [J]. J. Am. Chem. Soc. 140(44), 14735–14739 (2018)

    Google Scholar 

  16. C.J. Madadrang et al., Adsorption behavior of EDTA-graphene oxide for Pb (II) removal [J]. ACS Appl. Mater. Interfaces 4(3), 1186–1193 (2012)

    Google Scholar 

  17. H. Wang, X. Yuan, Y. Wu et al., Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution [J]. Appl. Surf. Sci. 279, 432–440 (2013)

    ADS  Google Scholar 

  18. Y. Zhang, Z. Li, Z. Zhao et al., Mesoporous carbon in biomedicine: modification strategies and biocompatibility[J]. Carbon 212, 118121 (2023)

    Google Scholar 

  19. J.A. Hu, H.L. Wang, Q.M. Gao et al., Porous carbons prepared by using metal-organic framework as the precursor for supercapacitors[J]. Carbon 48(12), 3599–3606 (2010)

    Google Scholar 

  20. M. Moayed Mohseni, M. Jouyandeh, S. Mohammad Sajadi et al., Metal-organic frameworks (MOF) based heat transfer: a comprehensive review[J]. Chem. Eng. J. 449, 137700 (2022)

    Google Scholar 

  21. N. Rabiee, M. Atarod, M. Tavakolizadeh et al., Green metal-organic frameworks (MOFs) for biomedical applications[J]. Micropor. Mesopor. Mater. 335, 111670 (2022)

    Google Scholar 

  22. J.O. Ighalo, S. Rangabhashiyam, C.A. Adeyanju et al., Zeolitic Imidazolate Frameworks (ZIFs) for aqueous phase adsorption—a review [J]. J. Ind. Eng. Chem. 105(25), 34–48 (2021)

    Google Scholar 

  23. J. Zhang, Y. Tan, W.J. Song, Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review [J]. Microchim. Acta 187(4), 234 (2020)

    Google Scholar 

  24. E.D. Miensah, M.M. Khan, J.Y. Chen et al., Zeolitic imidazolate frameworks and their derived materials for sequestration of radionuclides in the environment: a review [J]. Crit. Rev. Environ. Sci. Technol. 50(18), 1874–1934 (2020)

    Google Scholar 

  25. B. Chen, Z. Yang, Y. Zhu et al., Zeolitic imidazolate framework materials: recent progress in synthesis and applications [J]. J. Mater. Chem. A 2(40), 16811–16831 (2014)

    Google Scholar 

  26. H. Xiaochun, Z. Jiepeng, C. Xiaoming, Zn(bim)2] · (H2O)1.67: A metal-organic open-framework with sodalite topology [J]. Sci. Bull. 48, 1531–1534 (2003)

    Google Scholar 

  27. K.S. Park, N. Zheng, A. Cté et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. Proc. Natl. Acad. Sci. 103(27), 10186–10191 (2006)

    ADS  Google Scholar 

  28. H. Hayashi, A.P. Cote, H. Furukawa et al., Zeolite A imidazolate frameworks [J]. Nat. Mater. 6(7), 501–506 (2007)

    ADS  Google Scholar 

  29. R. Banerjee, H. Furukawa, D.B. Ritt et al., Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties [J]. J. Am. Chem. Soc. 131(11), 3875–3877 (2009)

    Google Scholar 

  30. Y.J. Dong, K. Gai, X.X. Gong, Determination of trace lanthanum by direct absorbance photometry with the chromogenic agent arsenazo-arsine III [J]. J. Chongqing Normal Univ. Nat. Sci. Ed. 21(4), 3 (2004)

    Google Scholar 

  31. L. Xiancai, Y. Longlong, H. Quanhong, Z. Song, T. Minglei, Adsorption kinetics and thermodynamics of Rhodium ions on RH-IIP-MAA /MCM-41 imprinted polymer [J]. J. Nanchang Univ. (Engineering Science) 41(04), 307–311 (2019)

    Google Scholar 

  32. Y.Y. Qin, X.C. Li et al., Preparation of composite molecular sieve MCM-41/Y and its adsorption performance on lanthanide ions[J]. J. Nanchang Univ. (Engineering Edition) 43(03), 205–209 (2021)

    Google Scholar 

  33. H. Moussout, Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models [J]. Karbala Int. J. Mod. Sci. 4(2), 244–254 (2018)

    Google Scholar 

  34. Q. Song, Y. Fang, Z. Liu et al., The performance of porous hexagonal BN in high adsorption capacity towards antibiotics pollutants from aqueous solution [J]. Chem. Eng. J. 325, 71–79 (2017)

    Google Scholar 

  35. A.A. Halim, H.A. Aziz, M. Johari et al., Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment [J]. Desalination 262(1–3), 31–35 (2010)

    Google Scholar 

  36. M.M. Hamed, S.E. Rizk, A.A. Nayl, Adsorption kinetics and modeling of gadolinium and cobalt ions sorption by an ion-exchange resin [J]. Particul. Technol. 34(6), 716–724 (2015)

    Google Scholar 

  37. B. Gsa, C. Mn, Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: isotherm and kinetic modelling [J]. J. Mol. Liq. 310, 113025 (2020)

    Google Scholar 

  38. M.A. Al-Anber, Adsorption of ferric ions onto natural feldspar: kinetic modeling and adsorption isotherm [J]. Int. J. Environ. Sci. Technol. 12(1), 139–150 (2015)

    Google Scholar 

  39. J.S. Piccin, T. Cadaval, L. Pinto et al., Adsorption isotherms in liquid phase: experimental, modeling, and interpretations [J] (Springer, Berlin, 2017), pp.19–51

    Google Scholar 

  40. P. Sharma, Synthesis, characterization and sorption behavior of zirconium(IV) antimonotungstate: An inorganic ion exchanger [J]. Desalination 267(2–3), 277–285 (2011)

    MathSciNet  Google Scholar 

  41. A. Azizi, M. Forghani, M.J. Livani et al., Adsorption of lead(II) and chromium(VI) from aqueous environment onto metal-organic framework MIL-100(Fe): synthesis, kinetics, equilibrium and thermodynamics [J]. J. Solid State Chem. 291, 121636 (2020)

    Google Scholar 

  42. A. Gurses, M. Yalcin, M. Sozbilir et al., The investigation of adsorption thermodynamics and mechanism of a cationic surfactant, CTAB, onto powdered active carbon [J]. Fuel Process. Technol. 81(1), 57–66 (2003)

    Google Scholar 

  43. F.B. Scheufele, A. Módenes, C.E. Borba et al., Monolayer-multilayer adsorption phenomenological model: kinetics, equilibrium and thermodynamics [J]. Chem. Eng. J. 284, 1328–1341 (2016)

    Google Scholar 

  44. X. Zhang, Q. Wang, J. Li et al., In situ fabrication of hollow ZnO@NC polyhedra from ZIF-8 for the determination of trace Cd (II) [J]. Analyst 143(12), 2837–2843 (2018)

    ADS  Google Scholar 

  45. S. Liu, H. Zhang et al., Metal-organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions [J]. Carbon 106, 74–83 (2016)

    Google Scholar 

  46. Z. Tai, M. Shi, S. Chong et al., N-doped ZIF-8-derived carbon (NC-ZIF) as an anodic material for lithium-ion batteries [J]. J. Alloy. Compd. 800, 1–7 (2019)

    Google Scholar 

  47. R. Yang, X. Yan, Y. Li et al., Nitrogen-doped porous carbon-ZnO nanopolyhedra derived from ZIF-8: new materials for photoelectrochemical biosensors [J]. ACS Appl. Mater. Interfaces. 9(49), 42482–42491 (2017)

    Google Scholar 

  48. Y. Sun, Y. Wei, J. Pei et al., Study on adsorption of U(VI) from MOF-derived phosphorylated porous carbons [J]. J. Solid State Chem. 293, 121792 (2021)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Nature Science Foundation of China (51664042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiancai Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Huang, Y., Shi, M. et al. Selective adsorption study of Lu(III) on phosphorylated ZIF-8-derived nitrogen-doped porous carbon. Appl. Phys. A 129, 594 (2023). https://doi.org/10.1007/s00339-023-06863-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06863-z

Keywords

Navigation