Skip to main content
Log in

A first-principles study on chemical adsorption of lithium polysulfide molecules: investigating the influence of carbon, boron, and nitrogen vacancies in boron carbon nitride 2D sheets

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, we examined the molecular structure of pristine and defective BCN surfaces for the adsorption of lithium polysulfides. We introduced C/B/N vacancies to the 2D BCN surface and observed that the bandgap decreased in the order of BCN > C–BCN > B–BCN > N–BCN. The adsorption of lithium polysulfides on both pristine and defective BCN surfaces was primarily through physisorption. Our results indicated that the N–BCN surface showed good adsorption with smaller lithium polysulfides, while the C–BCN surface bound strongly with longer lithium polysulfides. We found that introducing vacancies in BCN surfaces improved the adsorption of lithium polysulfides, with values comparable to those of other 2D materials. Therefore, we propose that defective BCN surfaces can be effectively utilized as a cathode scaffold for lithium polysulfide capture in lithium–sulfur batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

N/A.

References

  1. L. Wang, T. Zhang, S. Yang, F. Cheng, J. Liang, J. Chen, A quantum-chemical study on the discharge reaction mechanism of lithium-sulfur batteries. J Energy Chem 22(1), 72–77 (2013)

    Google Scholar 

  2. H. Althues, S. Dörfler, S. Thieme, P. Strubel, S. Kaskel, Sulfur cathodes, in Lithium-sulfur batteries. (Wiley, Chichester, 2019), pp.33–69

    Google Scholar 

  3. R.S. Assary, L.A. Curtiss, Molecular level understanding of the interactions between reaction intermediates of Li–S energy storage systems and ether solvents, in Lithium-sulfur batteries. (Wiley, Chichester, 2019), pp.133–146

    Google Scholar 

  4. W. Mark, G.J. Offer, Mechanisms, in Lithium-Sulfur Batteries. (Wiley, Chichester, 2019), pp.129–131

    Google Scholar 

  5. T. Zhang, M. Marinescu, G.J. Offer, Lithium-sulfur model development, in Lithium-sulfur batteries. (Wiley, Chichester, 2019), pp.229–247

    Google Scholar 

  6. S. Waluś, Lithium sulfide, in Lithium-sulfur batteries. (Wiley, Chichester, 2019), pp.147–183

    Google Scholar 

  7. M. Barghamadi, M. Musameh, T. Rüther, A.I. Bhatt, A.F. Hollenkamp, A.S. Best, Electrolyte for lithium-sulfur batteries, in Lithium-sulfur batteries. (Wiley, Chichester, 2019), pp.71–119

    Google Scholar 

  8. G. Minton, Electrochemical theory and physics, in Lithium-sulfur batteries. (Wiley, Chichester, 2019), pp.3–32

    Google Scholar 

  9. R. Purkayastha, Degradation in Lithium-Sulfur Batteries, in Lithium-Sulfur Batteries. (Wiley, Chichester, 2019), pp.185–226

    Google Scholar 

  10. M. Wild, Anode-electrolyte interface, in Lithium-sulfur batteries. (Wiley, Chichester pp, 2019), pp.121–127

    Google Scholar 

  11. R. Demir-Cakan, Li-S Batteries (Book). The Challenges, Chemistry, Materials and Future Perspectives. 2017. https://doi.org/10.1142/q0074

  12. J. Xiao, J. Hu, H. Chen, M. Vijayakumar, J. Zheng, H. Pan, E. Walter, M. Hu, X. Deng, J. Feng, B.Y. Liaw, M. Gu, Z. Deng, D. Lv, S. Xu, C. Wang, J. Liu, Following the transient reactions in lithium-sulfur batteries using an in situ nuclear magnetic resonance (NMR) technique. Nano Lett. 15, 3309–3316 (2015). https://doi.org/10.1021/acs.nanolett.5b00521

    Article  ADS  Google Scholar 

  13. K. Zhu, C. Wang, Z. Chi, F. Ke, Y. Yang, A. Wang, W. Wang, L. Miao, How far away are lithium-sulfur batteries from commercialization? Front Energy Res (2019). https://doi.org/10.3389/fenrg.2019.00123

    Article  Google Scholar 

  14. A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium-sulfur batteries. Chem Rev 114(23), 11751–11787 (2014)

    Google Scholar 

  15. A. Manthiram, S.-H. Chung, C. Zu, Lithium-sulfur batteries: progress and prospects. Adv Mater 27(12), 1980–2006 (2015)

    Google Scholar 

  16. H.-J. Peng, J.-Q. Huang, X.-B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium-sulfur batteries. Adv Energy Mater 7(24), 1700260 (2017)

    Google Scholar 

  17. M. Cheviri, S. Lakshmipathi, DFT study of chemical reactivity parameters of lithium polysulfide molecules Li2Sn(1≤n≤8) in gas and solvent phase. Comput Theor Chem 1202, 113323 (2021)

    Google Scholar 

  18. M. Cheviri, S. Lakshmipathi, Nitrogen-doped buckybowls as potential scaffold material for lithium-sulfur battery: a DFT study. Electrocatalysis. (2021). https://doi.org/10.1007/s12678-021-00678-3

    Article  Google Scholar 

  19. M. Vijayakumar, N. Govind, E. Walter, S.D. Burton, A. Shukla, A. Devaraj, J. Xiao, J. Liu, C. Wang, A. Karim, S. Thevuthasan, Molecular structure and stability of dissolved lithium polysulfide species. Phys Chem Chem Phys 16(22), 10923–10932 (2014)

    Google Scholar 

  20. M. Cheviri, S. Lakshmipathi, Cobalt phthalocyanine is a suitable scaffold for lithium polysulfide (Li2Sn n = 2–8). Chem Phys Lett 739, 136942 (2020)

    Google Scholar 

  21. Z. Tong, L. Huang, W. Lei, H. Zhang, S. Zhang, Carbon-containing electrospun nanofibers for lithium–sulfur battery: current status and future directions. J Energy Chem 54, 254–273 (2021)

    Google Scholar 

  22. M. Wang, X. Xia, Y. Zhong, J. Wu, R. Xu, Z. Yao, D. Wang, W. Tang, X. Wang, J. Tu, Porous carbon hosts for lithium-sulfur batteries. Chem A Eur J. 25(15), 3710–3725 (2019). https://doi.org/10.1002/chem.201803153

    Article  Google Scholar 

  23. Y. Yang, W. Sun, J. Zhang, X. Yue, Z. Wang, K. Sun, High rate and stable cycling of lithium-sulfur batteries with carbon fiber cloth interlayer. Electrochim Acta 209, 691–699 (2016)

    Google Scholar 

  24. M.-S. Park, J.-S. Yu, K.J. Kim, G. Jeong, J.-H. Kim, T. Yim, Y.-N. Jo, U. Hwang, S. Kang, T. Woo, H. Kim, Y.-J. Kim, Porous carbon spheres as a functional conducting framework for use in lithium–sulfur batteries. RSC Adv 3(29), 11774–11781 (2013)

    ADS  Google Scholar 

  25. M. Zheng, Y. Chi, Q. Hu, H. Tang, X. Jiang, L. Zhang, S. Zhang, H. Pang, Q. Xu, Carbon nanotube-based materials for lithium–sulfur batteries. J Mater Chem A 7(29), 17204–17241 (2019)

    Google Scholar 

  26. R. Fang, S. Zhao, K. Chen, D.-W. Wang, F. Li, Binary graphene-based cathode structure for high-performance lithium-sulfur batteries. J Phys Energy 2(1), 015003 (2020)

    Google Scholar 

  27. K. Weimin, F. Lanlan, D. Nanping, Z. Huijuan, Q. Li, N. Minoo, Y. Jing, C. Bowen, Sulfur-embedded porous carbon nanofiber composites for high stability lithium-sulfur batteries. Chem Eng J. 333, 185–190 (2017)

    Google Scholar 

  28. S. Rehman, K. Khan, Y. Zhao, Y. Hou, Nanostructured cathode materials for lithium–sulfur batteries: progress, challenges and perspectives. J Mater Chem A 5(7), 3014–3038 (2017)

    Google Scholar 

  29. L.-C. Yin, J. Liang, G.-M. Zhou, F. Li, R. Saito, H.-M. Cheng, Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. Nano Energy 25, 203–210 (2016)

    Google Scholar 

  30. H.R. Jiang, W. Shyy, M. Liu, Y.X. Ren, T.S. Zhao, Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a first-principles study. J Mater Chem A 6(5), 2107–2114 (2018)

    Google Scholar 

  31. J. Zhao, Y. Yang, R.S. Katiyar, Z. Chen, Phosphorene as a promising anchoring material for lithium–sulfur batteries: a computational study. J Mater Chem A 4(16), 6124–6130 (2016)

    Google Scholar 

  32. S. Mukherjee, L. Kavalsky, K. Chattopadhyay, C.V. Singh, Adsorption and diffusion of lithium polysulfides over blue phosphorene for Li–S batteries. Nanoscale 10(45), 21335–21352 (2018)

    Google Scholar 

  33. T.-Z. Hou, W.-T. Xu, X. Chen, H.-J. Peng, J.-Q. Huang, Q. Zhang, Lithium bond chemistry in lithium-sulfur batteries. Angew Chem Int Ed 56(28), 8178–8182 (2017)

    Google Scholar 

  34. M. Bini, D. Capsoni, S. Ferrari, E. Quartarone, P. Mustarelli, 1 Rechargeable lithium batteries key scientific and technological challenges, in Rechargeable lithium batteries. ed. by A.A. Franco (Woodhead Publishing, New York, 2015), pp.1–17

    Google Scholar 

  35. S. Beniwal, J. Hooper, D.P. Miller, P.S. Costa, G. Chen, S.-Y. Liu, P.A. Dowben, E.C.H. Sykes, E. Zurek, A. Enders, Graphene-like boron–carbon–nitrogen monolayers. ACS Nano 11(3), 2486–2493 (2017)

    Google Scholar 

  36. S. Angizi, M.A. Akbar, M. Darestani-Farahani, P. Kruse, Review—two-dimensional boron carbon nitride: a comprehensive review. ECS J Solid State Sci Technol 9(8), 083004 (2020)

    ADS  Google Scholar 

  37. A. Yadav, S.S. Dindorkar, Vacancy defects in monolayer boron carbon nitride for enhanced adsorption of paraben compounds from aqueous stream: a quantum chemical study. Surf Sci 723, 122131 (2022)

    Google Scholar 

  38. S.S. Dindorkar, N. Sinha, A. Yadav, Comparative study on adsorption of volatile organic compounds on graphene, boron nitride and boron carbon nitride nanosheets. Solid State Commun 359, 115021 (2023)

    Google Scholar 

  39. S.S. Dindorkar, R. Vardhan Patel, A. Yadav, Adsorption behavior of graphene, boron nitride and boron carbon nitride nanosheets toward pharmaceutical and personal care products. Comput Theor Chem. 1220, 113995 (2023)

    Google Scholar 

  40. A. Yadav, S.S. Dindorkar, S.B. Ramisetti, N. Sinha, Simultaneous adsorption of methylene blue and arsenic on graphene, boron nitride and boron carbon nitride nanosheets: Insights from molecular simulations. J Water Process Eng. 46, 102653 (2022)

    Google Scholar 

  41. W. Lei, S. Qin, D. Liu, D. Portehault, Z. Liu, Y. Chen, Large scale boron carbon nitride nanosheets with enhanced lithium storage capabilities. Chem Commun 49(4), 352–354 (2013)

    Google Scholar 

  42. S. Thomas, M. Asle Zaeem, A new planar BCN lateral heterostructure with outstanding strength and defect-mediated superior semiconducting to metallic properties. Phys Chem Chem Phys 22(38), 22066–22077 (2020)

    Google Scholar 

  43. J. Hafner et al., The Vienna AB-initio simulation program VASP: an efficient and versatile tool for studying the structural, dynamic, and electronic properties of materials, in Properties of complex inorganic. In solids. ed. by A. Gonis, A. Meike, P.E.A. Turchi (Springer, Boston, 1997)

    Google Scholar 

  44. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    ADS  Google Scholar 

  45. Chemcraft - graphical software for visualization of quantum chemistry computations. Version 1.8, build 654. https://www.chemcraftprog.com

  46. P.S.V. Kumar, V. Raghavendra, V. Subramanian, Bader’s theory of atoms in molecules (AIM) and its applications to chemical bonding. J Chem Sci 128(10), 1527–1536 (2016)

    Google Scholar 

  47. T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5), 580–592 (2012)

    Google Scholar 

  48. X. Ren, B. Wang, J. Zhu, J. Liu, W. Zhang, Z. Wen, The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium–air battery: a first-principles study. Phys Chem Chem Phys 17(22), 14605–14612 (2015)

    Google Scholar 

  49. C.-Y. Liu, E.Y. Li, Adsorption mechanisms of lithium polysulfides on graphene-based interlayers in lithium sulfur batteries. ACS Appl Energy Mater 1(2), 455–463 (2018)

    Google Scholar 

  50. M. Lalitha, S.S. Mahadevan, S. Lakshmipathi, Improved lithium adsorption in boron- and nitrogen-substituted graphene derivatives. J Mater Sci 52(2), 815–831 (2017)

    ADS  Google Scholar 

  51. A.L. Arokiyanathan, N. Panjulingam, S. Lakshmipathi, Chemical properties of lithium cluster (Lix, x = 2–8) on stone-wales defect graphene sheet: a DFT study. J Phys Chem C 124(13), 7229–7237 (2020)

    Google Scholar 

  52. X. Jia, H. Zhang, Z. Zhang, L. An, Effect of doping and vacancy defects on the adsorption of CO on graphene. Mater Chem Phys 249, 123114 (2020)

    Google Scholar 

  53. K. Zhao, Y. Guo, Y. Shen, Q. Wang, Y. Kawazoe, P. Jena, Penta-BCN: a new ternary pentagonal monolayer with intrinsic piezoelectricity. J Phys Chem Lett 11(9), 3501–3506 (2020)

    Google Scholar 

  54. S.T. Skowron, I.V. Lebedeva, A.M. Popov, E. Bichoutskaia, Energetics of atomic scale structure changes in graphene. Chem Soc Rev 44(10), 3143–3176 (2015)

    Google Scholar 

  55. W. Zhang, W.-C. Lu, H.-X. Zhang, K.M. Ho, C.Z. Wang, Tight-binding calculation studies of vacancy and adatom defects in graphene. J Phys Condens Matter 28(11), 115001 (2016)

    ADS  Google Scholar 

  56. Y. Wada, Y.K. Yap, M. Yoshimura, Y. Mori, T. Sasaki, The control of BN and BC bonds in BCN films synthesized using pulsed laser deposition. Diam Relat Mater 9(3), 620–624 (2000)

    ADS  Google Scholar 

  57. L. Cai, C. Feng, Effect of vacancy defects on the electronic structure and optical properties of GaN. J Nanotechnol 2017, 1–6 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors thank the University Grants Commission, New Delhi, India, for providing funds to establish a High-Performance Computing facility under the Center with Potential for Excellence in Particular Area (CPEPA) scheme [Grant 2-8/2016 (NS/PE) dated October 3, 2016].

Funding

University Grants Commission, INDIA, Grant 2-8/2016 (NS/PE) dated October 3, 2016.

Author information

Authors and Affiliations

Authors

Contributions

MC: methodology, software, data curation, formal analysis, writing—original draft. SL: methodology, software, data curation, formal analysis, review and editing

Corresponding author

Correspondence to Senthilkumar Lakshmipathi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

Ethical approval

All ethical guidelines have been adhered to.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2,725 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheviri, M., Lakshmipathi, S. A first-principles study on chemical adsorption of lithium polysulfide molecules: investigating the influence of carbon, boron, and nitrogen vacancies in boron carbon nitride 2D sheets. Appl. Phys. A 129, 573 (2023). https://doi.org/10.1007/s00339-023-06849-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06849-x

Keywords

Navigation