Skip to main content
Log in

Oxygen defects boost polysulfides immobilization and catalytic conversion: First-principles computational characterization and experimental design

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although some experiments have shown that point defects in a cathode host material may enhance its performance for lithium-sulfur battery (LSB), the enhancement mechanism needs to be well investigated for the design of desired sulfur host. Herein, the first principle density functional theory (DFT) is adopted to investigate a high-performance sulfur host material based on oxygen-defective TiO2 (D-TiO2). The adsorption energy comparisons and Gibbs free energy analyses verify that D-TiO2 has relatively better performances than defect-free TiO2 in terms of anchoring effect and catalytic conversion of polysulfides. Meanwhile, D-TiO2 is capable of absorbing the most soluble and diffusive long-chain polysulfides. The newly designed D-TiO2 composited with three-dimensional graphene aerogel (D-TiO2@Gr) has been shown to be an excellent sulfur host, maintaining a specific discharge capacity of 1,049.3 mAhg−1 after 100 cycles at 1C with a sulfur loading of 3.2 mgcm−2. Even with the sulfur mass loading increasing to 13.7 mgcm−2, an impressive stable cycling is obtained with an initial areal capacity of 14.6 mAhcm−2, confirming the effective enhancement of electrochemical performance by the oxygen defects. The DFT calculations shed lights on the enhancement mechanism of the oxygen defects and provide some guidance for designing advanced sulfur host materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, H.; Lee, J.; Ahn, H.; Kim, O.; Park, M. J. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries. Nat. Commun.2015, 6, 7278.

    CAS  Google Scholar 

  2. Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater.2015, 27, 1980–2006.

    CAS  Google Scholar 

  3. Son, Y.; Lee, J. S.; Son, Y.; Jang, J. H.; Cho, J. Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater.2015, 5, 1500110.

    Google Scholar 

  4. Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev.2013, 42, 3018–3032.

    CAS  Google Scholar 

  5. Guo, W.; Fu, Y. Z. A perspective on energy densities of rechargeable Li-S batteries and alternative sulfur-based cathode materials. Energy Environ. Mater.2018, 1, 20–27.

    CAS  Google Scholar 

  6. Yu, T.; Li, F.; Liu, C. Y.; Zhang, S. T.; Xu, H. Y.; Yang, G. C. Understanding the role of lithium sulfide clusters in lithium-sulfur batteries. J. Mater. Chem. A2017, 5, 9293–9298.

    CAS  Google Scholar 

  7. Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater.2015, 5, 1500408.

    Google Scholar 

  8. He, Y. B.; Chang, Z.; Wu, S. C.; Zhou, H. S. Effective strategies for long-cycle life lithium-sulfur batteries. J. Mater. Chem. A2018, 6, 6155–6182.

    CAS  Google Scholar 

  9. Fu, A.; Wang, C. Z.; Pei, F.; Cui, J. Q.; Fang, X. L.; Zheng, N. F. Recent advances in hollow porous carbon materials for lithium-sulfur batteries. Small2019, 15, 1804786.

    Google Scholar 

  10. Ogoke, O.; Wu, G.; Wang, X. L.; Casimir, A.; Ma, L.; Wu, T. P.; Lu, J. Effective strategies for stabilizing sulfur for advanced lithium-sulfur batteries. J. Mater. Chem. A2017, 5, 448–469.

    CAS  Google Scholar 

  11. Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy2016, 1, 16132.

    CAS  Google Scholar 

  12. Wu, Y. L.; Zhu, X. R.; Li, P. R.; Zhang, T.; Li, M.; Deng, J.; Huang, Y.; Ding, P.; Wang, S. X.; Zhang, R. et al. Ultradispersed WxC nanoparticles enable fast polysulfide interconversion for high-performance Li-S batteries. Nano Energy2019, 59, 636–643.

    CAS  Google Scholar 

  13. Yu, M. L.; Zhou, S.; Wang, Z. Y.; Wang, Y. W.; Zhang, N.; Wang, S.; Zhao, J. J.; Qiu, J. S. Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries. Energy Storage Mater.2018, 20, 98–107.

    Google Scholar 

  14. Du, L. Y.; Wu, Q.; Yang, L. J.; Wang, X.; Che, R. C.; Lyu, Z.; Chen, W.; Wang, X. Z.; Hu, Z. Efficient synergism of electrocatalysis and physical confinement leading to durable high-power lithium-sulfur batteries. Nano Energy2019, 57, 34–40.

    CAS  Google Scholar 

  15. Xu, L. L.; Zhao, H. Y.; Sun, M. Z.; Huang, B. L.; Wang, J. W.; Xia, J. L.; Li, N.; Yin, D. D.; Luo, M.; Luo, F. et al. Oxygen vacancies on layered niobic acid that weaken the catalytic conversion of polysulfides in lithium-sulfur batteries. Angew Chem., Int. Ed.2019, 58, 11491–11496.

    CAS  Google Scholar 

  16. Yu, M. L.; Wang, Z. Y.; Wang, Y. W.; Dong, Y. F.; Qiu, J. S. Freestanding flexible Li2S paper electrode with high mass and capacity loading for high-energy Li-S batteries. Adv. Energy Mater.2017, 7, 1700018.

    Google Scholar 

  17. Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater.2017, 7, 1700260.

    Google Scholar 

  18. Yang, W.; Yang, W.; Dong, L. B.; Gao, X. C.; Wang, G X.; Shao, G. J. Enabling immobilization and conversion of polysulfides through a nitrogen-doped carbon nanotubes/ultrathin MoS2 nanosheet core-shell architecture for lithium-sulfur batteries. J. Mater. Chem. A2019, 7, 13103–13112.

    CAS  Google Scholar 

  19. Salhabi, E. H. M.; Zhao, J. L.; Wang, J. Y.; Yang, M.; Wang, B.; Wang, D. Hollow multi-shelled structural TiO2-x with multiple spatial confinement for long-life lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 9078–9082.

    CAS  Google Scholar 

  20. Wang, H. E.; Yin, K. L.; Qin, N.; Zhao, X.; Xia, F. J.; Hu, Z. Y.; Guo, G. L.; Cao, G. Z.; Zhang, W. J. Oxygen-deficient titanium dioxide as a functional host for lithium-sulfur batteries. J. Mater. Chem. A2019, 7, 10346–10353.

    CAS  Google Scholar 

  21. Cai, W. L.; Li, G. R.; Zhang, K. L.; Xiao, G. N.; Wang, C.; Ye, K. F.; Chen, Z. W.; Zhu, Y. C.; Qian, Y. T. Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv. Funct. Mater.2018, 28, 1704865.

    Google Scholar 

  22. Hao, B. Y.; Li, H.; Lv, W.; Zhang, Y. B.; Niu, S. Z.; Qi, Q.; Xiao, S. J.; Li, J.; Kang, F. Y.; Yang, Q. H. Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries. Nano Energy2019, 60, 305–311.

    CAS  Google Scholar 

  23. Li, C. C.; Liu, X. B.; Zhu, L.; Huang, R. Z.; Zhao, M. W.; Xu, L. Q.; Qian, Y. T. Conductive and polar titanium boride as a sulfur host for advanced lithium-sulfur batteries. Chem. Mater.2018, 30, 6969–6977.

    CAS  Google Scholar 

  24. Guan, B.; Fan, L. S.; Wu, X.; Wang, P. X.; Qiu, Y.; Wang, M. X.; Guo, Z. K.; Zhang, N. Q.; Sun, K. N. The facile synthesis and enhanced lithium-sulfur battery performance of an amorphous cobalt boride (Co2B)@graphene composite cathode. J. Mater. Chem. A2018, 6, 24045–24049.

    CAS  Google Scholar 

  25. Chen, Y.; Zhang, W. X.; Zhou, D.; Tian, H. J.; Su, D. W.; Wang, C. Y.; Stockdale, D.; Kang, F. Y.; Li, B. H.; Wang, G. X. Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries. ACS Nano2019, 13, 4731–4741.

    CAS  Google Scholar 

  26. Razaq, R.; Sun, D.; Xin, Y.; Li, Q.; Huang, T. Z.; Zheng, L.; Zhang, Z. L.; Huang, Y. H. Enhanced kinetics of polysulfide redox reactions on Mo2C/CNT in lithium-sulfur batteries. Nanotechnology2018, 29, 295401.

    Google Scholar 

  27. Wang, J. W.; Zhou, B.; Zhao, H. Y.; Wu, M. M.; Yang, Y. D.; Sun, X. L.; Wang, D. H.; Du, Y. P. A sandwich-type sulfur cathode based on multifunctional ceria hollow spheres for high-performance lithium-sulfur batteries. Mater. Chem. Front.2019, 3, 1317–1322.

    CAS  Google Scholar 

  28. Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci.2017, 10, 1694–1703.

    CAS  Google Scholar 

  29. Song, Y. Z.; Zhao, W.; Kong, L.; Zhang, L.; Zhu, X. Y.; Shao, Y. L.; Ding, F.; Zhang, Q.; Sun, J. Y.; Liu, Z. F. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries. Energy Environ. Sci.2018, 11, 2620–2630.

    CAS  Google Scholar 

  30. Choudhury, B.; Bayan, S.; Choudhury, A.; Chakraborty, P. Narrowing of band gap and effective charge carrier separation in oxygen deficient TiO2 nanotubes with improved visible light photocatalytic activity. J. Colloid Interf. Sci2016, 465, 1–10.

    CAS  Google Scholar 

  31. Liu, M. M; Zhang, C. C.; Su, J. M.; Chen, X.; Ma, T. Y.; Huang, T.; Yu, A. S. Propelling polysulfide conversion by defect-rich MoS2 nanosheets for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces2019, 11, 20788–20795.

    CAS  Google Scholar 

  32. Tian, Y.; Zhao, Y.; Zhang, Y. G.; Ricardez-Sandoval, L. A.; Wang, X.; Li, J. D. Construction of oxygen-deficient La(OH)3 nanorods wrapped by reduced graphene oxide for polysulfide trapping toward high-performance lithium/sulfur batteries. ACS Appl. Mater. Interfaces2019, 11, 23271–23279.

    CAS  Google Scholar 

  33. Wang, Y. K.; Zhang, R. F.; Chen, J.; Wu, H.; Lu, S. Y.; Wang, K.; Li, H. L.; Harris, C. J.; Xi, K.; Kumar, R. V. et al. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv. Energy Mater.2019, 9, 1900953.

    Google Scholar 

  34. Chen, X.; Hou, T. Z.; Persson, K. A.; Zhang, Q. Combining theory and experiment in lithium-sulfur batteries: Current progress and future perspectives. Mater. Today2019, 22, 142–158.

    CAS  Google Scholar 

  35. Rana, M.; Li, M.; Huang, X.; Luo, B.; Gentle, I.; Knibbe, R. Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. J. Mater. Chem. A2019, 7, 6596–6615.

    CAS  Google Scholar 

  36. Hummers, W. S. Jr., Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc.1958, 80, 1339.

    CAS  Google Scholar 

  37. Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater.2018, 30, 1705369.

    Google Scholar 

  38. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B1996, 54, 11169–11186.

    CAS  Google Scholar 

  39. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865–3868.

    CAS  Google Scholar 

  40. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B1999, 59, 1758–1775.

    CAS  Google Scholar 

  41. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys.2010, 132, 154104.

    Google Scholar 

  42. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys.2000, 113, 9901–9904.

    CAS  Google Scholar 

  43. Savva, A. I.; Smith, K. A.; Lawson, M.; Croft, S. R.; Weltner, A. E.; Jones, C. D.; Bull, H.; Simmonds, P. J.; Li, L.; Xiong, H. Defect generation in TiO2 nanotube anodes via heat treatment in various atmospheres for lithium-ion batteries. Phys. Chem. Chem. Phys.2018, 20, 22537–22546.

    CAS  Google Scholar 

  44. Sarkar, A.; Khan, G. G. The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures. Nanoscale2019, 11, 3414–3444.

    CAS  Google Scholar 

  45. Li, B. Q.; Peng, H. J.; Chen, X.; Zhang, S. Y.; Xie, J.; Zhao, C. X.; Zhang, Q. Polysulfide electrocatalysis on framework porphyrin in high-capacity and high-stable lithium-sulfur batteries. CCS Chem.2019, 1, 128–137.

    CAS  Google Scholar 

  46. Gao, X. J.; Yang, X. F.; Li, M. S.; Sun, Q.; Liang, J. N.; Luo, J.; Wang, J. W.; Li, W. H.; Liang, J. W.; Liu, Y. L. et al. Cobalt-doped SnS2 with dual active centers of synergistic absorption-catalysis effect for high-S loading Li-S batteries. Adv. Funct. Mater.2019, 29, 1806724.

    Google Scholar 

  47. Cai, D.; Lu, M. J.; Li, L.; Cao, J. M.; Chen, D.; Tu, H. R.; Li, J. Z.; Han, W. A highly conductive MOF of graphene analogue Ni3(HITP)2 as a sulfur host for high-performance lithium-sulfur batteries. Small2019, 15, 1902605.

    CAS  Google Scholar 

  48. Liu, S. F.; Ji, X.; Yue, J.; Hou, S.; Wang, P. F.; Cui, C. Y.; Chen, J.; Shao, B. W.; Li, J. R.; Han, F. D. et al. High interfacial-energy interphase promoting safe lithium metal batteries. J. Am. Chem. Soc.2020, 142, 2438–2447.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Excellent Dissertation Cultivation Funds of Wuhan University of Technology (No. 2018-YS-013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhao.

Electronic Supplementary Material

12274_2020_2850_MOESM1_ESM.pdf

Oxygen defects boost polysulfides immobilization and catalytic conversion: First-principles computational characterization and experimental design

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Yu, B., Wang, H. et al. Oxygen defects boost polysulfides immobilization and catalytic conversion: First-principles computational characterization and experimental design. Nano Res. 13, 2299–2307 (2020). https://doi.org/10.1007/s12274-020-2850-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2850-5

Keywords

Navigation