Skip to main content
Log in

Study of the structural and morphological characteristics of the CdxTeyOz nanocomposite obtained on the surface of the CdS/ZnO heterostructure by the SILAR method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CdxTeyOz nanocomposite films were grown by the SILAR method on the CdS/ZnO surface during cyclic processing in precursor solutions followed by removal of excess reagent from the surface of the substrate by washing in hydrogen peroxide. To stabilise the surface states and saturate with oxygen, the surface was annealed in a diffusion furnace. XRD, RAMAN, and SEM analyses were used to analyse the phase composition, structural, and substructural parameters. The nanocomposite film consists of different types of oxides, namely trigonal TeO3, Monoclinic TeO4 and CdTe3O8, orthorhombic TeO2 and CdTeO3. The formation of films is explained using the Volmer–Weber growth mechanism. SEM analysis of the formed nanocomposite showed the presence of nanometer-scale globules. Partial amorphization of the heterostructure occurs due to the presence of nanometer-sized particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data which are required to supporting finding of this study are present in the article.

References

  1. H. Wang, Z. Zeng, P. Xu, L. Li, G. Zeng, R. Xiao, Z. Tang, D. Huang, L. Tang, C. Lai et al., Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem. Soc. Rev. 48, 488 (2019). https://doi.org/10.1039/C8CS00376A

    Article  Google Scholar 

  2. R. Swartwout, M.T. Hoerantner, V. Bulović, Scalable deposition methods for large-area production of perovskite thin films. Energy Environ. Mater. 2(2), 119 (2019). https://doi.org/10.1002/eem2.12043

    Article  Google Scholar 

  3. M. Zubkins, R. Kalendarev, J. Gabrusenoks, A. Plaude, A. Zitolo, A. Anspoks, K. Pudzs, K. Vilnis, A. Azens, J. Purans, Changes in structure and conduction type upon addition of Ir to ZnO thin films. Thin Solid Films 636, 694 (2017). https://doi.org/10.1016/j.tsf.2017.05.049

    Article  ADS  Google Scholar 

  4. T. Schenk, A. Anspoks, I. Jonane, R. Ignatans, B.S. Johnson, J.L. Jones, M. Tallarida, C. Marini, L. Simonelli, P. Hönicke, Local structural investigation of hafnia-zirconia polymorphs in powders and thin films by X-ray absorption spectroscopy. Acta Mater. 180, 158 (2019). https://doi.org/10.1016/j.actamat.2019.09.003

    Article  ADS  Google Scholar 

  5. R. Szczesny, A. Scigala, B. Derkowska-Zielinska, L. Skowronski, C. Cassagne, G. Boudebs, R. Viter, E. Szlyk, Synthesis, optical, and morphological studies of ZnO powders and thin films fabricated by wet chemical methods. Materials 13, 2559 (2020). https://doi.org/10.3390/ma13112559

    Article  ADS  Google Scholar 

  6. A. Khodasevich, S. Panarin, K. Terekhov, A. Artsemyeva, H. Dolgiy, V.B. Bondarenko, Fabrication of SERS-active substrates by electrochemical and electroless deposition of metals in macroporous silicon. ECS Trans. 53, 85 (2013). https://doi.org/10.1149/05311.0085ecst

    Article  Google Scholar 

  7. N. Khinevich, H. Bandarenka, S. Zavatski, K. Girel, A. Tamulevičienė, T. Tamulevičius, S. Tamulevičius, Porous silicon—a versatile platform for mass-production of ultrasensitive SERS-active substrates. Microporous Mesoporous Mater. 323, 111204 (2021). https://doi.org/10.1016/j.micromeso.2021.111204

    Article  Google Scholar 

  8. T. Potlog, Thin-film photovoltaic devices based on A2B6 compounds, in Nanostructures and Thin Films for Multifunctional Applications, vol. 143 (2016). https://doi.org/10.1007/978-3-319-30198-3_5

  9. M. Shur, S. Rumyantsev, R. Gaska, Semiconductor thin films and thin film devices for electrotextiles. Int. J. High Speed Electron. Syst. 12(02), 371 (2002). https://doi.org/10.1142/S0129156402001320

    Article  Google Scholar 

  10. W.W. Yu, L. Qu, A.W. Guo, X, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854 (2003). https://doi.org/10.1021/CM034081K

    Article  Google Scholar 

  11. M. Hou, Z. Zhou, A. Xu, K. Xiao, J. Li, D.L. Qin, Synthesis of group II–VI semiconductor nanocrystals via phosphine free method and their application in solution processed photovoltaic devices. Nanomaterials 11(8), 2071 (2021). https://doi.org/10.3390/nano11082071

    Article  Google Scholar 

  12. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Shape control of CdSe nanocrystals. Nature 404, 59 (2000). https://doi.org/10.1038/35003535

    Article  ADS  Google Scholar 

  13. G. Khrypunov, S. Vambol, N. Deyneko, Y. Sychikova, Increasing the efficiency of film solar cells based on cadmium telluride. East. Eur. J. Enterp. Technol. 6(5(84)), 12 (2016). https://doi.org/10.15587/1729-4061.2016.85617

    Article  Google Scholar 

  14. A. Bosio, S. Pasini, N. Romeo, The history of photovoltaics with emphasis on CdTe solar cells and modules. Coatings 10, 344 (2020). https://doi.org/10.3390/coatings10040344

    Article  Google Scholar 

  15. A. Akilbekov, R. Balakhayeva, M. Zdorovets, Z. Baymukhanov, F.F. Komarov, K. Karim, A.I. Popov, A. Dauletbekova, Ion track template technology for fabrication of CdTe and CdO nanocrystals. Nucl. Instrum. Methods Phys. Res. Sect. B 481, 30 (2020). https://doi.org/10.1016/j.nimb.2020.08.009

    Article  ADS  Google Scholar 

  16. R. Balakhayeva, A. Akilbekov, Z. Baimukhanov, A. Usseinov, S. Giniyatova, M. Zdorovets, L. Vlasukova, A.I. Popov, A. Dauletbekova, CdTe nanocrystal synthesis in SiO2/Si ion-track template: the study of electronic and structural properties. Phys. Status Solidi A Appl. Mater. Sci. 218, 2000231 (2021). https://doi.org/10.1002/pssa.202000231

    Article  ADS  Google Scholar 

  17. P. Ščajev, A. Mekys, L. Subačius, S. Stanionytė, D. Kuciauskas, K.G. Lynn, S.K. Swain, Impact of dopant-induced band tails on optical spectra, charge carrier transport, and dynamics in single-crystal CdTe. Sci Rep 12, 12851 (2022). https://doi.org/10.1038/s41598-022-16994-7

    Article  ADS  Google Scholar 

  18. H.C. Kim, H.G. Jo, The effect of Te-doping and heat treatment on the structural properties of CdTe absorber layer for CdS/CdTe solar cell. Opt. Mater. 134, 113061 (2022)

    Article  Google Scholar 

  19. R. Balakhayeva, A. Akilbekov, Z. Baimukhanov, S. Giniyatova, M. Zdorovets, Y. Gorin, A.I. Popov, A. Dauletbekova, Structure properties of CdTe nanocrystals created in SiO2/Si ion track templates. Surf. Coat. Technol. 401, 126269 (2020). https://doi.org/10.1016/j.surfcoat.2020.126269

    Article  Google Scholar 

  20. Y.O. Suchikova, I.T. Bogdanov, S.S. Kovachov, Oxide crystals on the surface of porous indium phosphide. Arch. Comput. Mater. Sci. Surf. Eng. 2(98), 49 (2019). https://doi.org/10.5604/01.3001.0013.4606

    Article  Google Scholar 

  21. S.O. Vambol, I.T. Bohdanov, V.V. Vambol, Formation of filamentary structures of oxide on the surface of monocrystalline gallium arsenide. J. Nano Electron. Phys. 9(6), 060161 (2017). https://doi.org/10.21272/jnep.9(6).06016

    Article  Google Scholar 

  22. T.K. Van, L.Q. Pham, D.Y. Kim, Formation of a CdO layer on CdS/ZnO nanorod arrays to enhance their photoelectrochemical performance. Chemsuschem 7(12), 3505 (2014). https://doi.org/10.1002/cssc.201402365

    Article  Google Scholar 

  23. C. Eley, T. Li, F. Liao, S.M. Fairclough, J.M. Smith, G. Smith, Nanojunction-mediated photocatalytic enhancement in heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO nanocrystals. Angew. Chem. 126(30), 7972 (2014). https://doi.org/10.1002/ange.201404481

    Article  ADS  Google Scholar 

  24. T.R. Gurugubelli, R.V. Ravikumar, R. Koutavarapu, Enhanced photocatalytic activity of ZnO–CdS composite nanostructures towards the degradation of rhodamine B under solar light. Catalysts 12(1), 84 (2022). https://doi.org/10.3390/catal12010084

    Article  Google Scholar 

  25. Y. Lai, Y. Wang, Y. Zhu, R. Guo, Y. Xia, W. Huang, Z. Li, Irregular micro-island arrays of CdO/CdS composites derived from electrodeposited Cd for high photoelectrochemical performances. J. Electrochem. Soc. 165(3), H91 (2018). https://doi.org/10.1149/2.0321803jes

    Article  Google Scholar 

  26. R.S. Kapadnis, S.S. Kale, V.G. Wagh, Studies on chemically synthesis of polycrystalline CdTeO3 thin films. Studies 3(8), 1 (2013)

    Google Scholar 

  27. H. Arizpe-Chávez, R. Ramírez-Bon, F.J. Espinoza-Beltrán, O. Zelaya-Angel, J. González-Hernández, L. Baños, Optical and structural properties of CdTe-CdTeO3 nanocrystalline composites. AIP Conf. Proc. 378(1), 203 (1996). https://doi.org/10.1063/1.51213

    Article  ADS  Google Scholar 

  28. Y. Suohikova, S. Vambol, V. Vambol, N. Mozaffari, N. Mozaffari, Justification of the most rational method for the nanostructures synthesis on the semiconductors surface. J. Achiev. Mater. Manuf. Eng. 92(1–2), 19 (2019). https://doi.org/10.5604/01.3001.0013.3184

    Article  Google Scholar 

  29. Y. Suchikova, Porous Indium Phosphide: Preparation and Properties. Handbook of Nanoelectrochemistry (Springer, Cham, 2016), pp.283–305. https://doi.org/10.1007/978-3-319-15266-0_28

    Book  Google Scholar 

  30. R. Castro-Rodríguez, A. Iribarren, P. Bartolo-Pérez, J.L. Peña, Obtaining of polycrystalline CdTeO3 by reactive pulse laser deposition. Thin Solid Films 484(1–2), 100 (2005). https://doi.org/10.1016/j.tsf.2005.02.011

    Article  ADS  Google Scholar 

  31. T. Munawar, M.S. Nadeem, F. Mukhtar, S. Manzoor et al., Enhanced photocatalytic, antibacterial, and electrochemical properties of CdO-based nanostructures by transition metals co-doping. Adv. Powder Technol. 33(3), 103451 (2022). https://doi.org/10.1016/j.apt.2022.103451

    Article  Google Scholar 

  32. O.O. Abegunde, E.T. Akinlabi, O.P. Oladijo, S. Akinlabi, Overview of thin film deposition techniques. AIMS Mater. Sci. 6(2), 174 (2019). https://doi.org/10.3934/matersci.2019.2.174

    Article  Google Scholar 

  33. A. Jilani, M.S. Abdel-Wahab, A.H. Hammad, Advance deposition techniques for thin film and coating. Mod. Technol. Creat. Thin Film Syst. Coat. 2(3), 137 (2017). https://doi.org/10.5772/65702

    Article  Google Scholar 

  34. D. Mahana, A.K. Mauraya, P. Pal, P. Singh, S.K. Muthusamy, Comparative study on surface states and CO gas sensing characteristics of CuO thin films synthesised by vacuum evaporation and sputtering processes. Mater. Res. Bull. 145, 111567 (2022). https://doi.org/10.1016/j.materresbull.2021.111567

    Article  Google Scholar 

  35. J.A. Suchikova, V.V. Kidalov, G.A. Sukach, Preparation of nanoporous n-InP (100) layers by electrochemical etching in HCI solution. Funct. Mater. 17(1), 131 (2010)

    Google Scholar 

  36. R. Homcheunjit, P. Pluengphon, A. Tubtimtae, P. Teesetsopon, Structural, optical, and electrical properties via two simple routes for the synthesis of multi-phase potassium antimony oxide thin films. Phys. B 637, 413885 (2022). https://doi.org/10.1016/j.physb.2022.413885

    Article  Google Scholar 

  37. Y.O. Sychikova, I.T. Bogdanov, S.S. Kovachov, Influence of current density of anodizing on the geometric characteristics of nanostructures synthesized on the surface of semiconductors of A3B5 group and silicon. Funct. Mater. 27(1), 29 (2019). https://doi.org/10.15407/fm27.01.29

    Article  Google Scholar 

  38. H.M. Pathan, C.D. Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bull. Mater. Sci. 27(2), 85 (2004). https://doi.org/10.1007/BF02708491

    Article  Google Scholar 

  39. S.P. Ratnayake, J. Ren, E. Colusso, M. Guglielmi, A. Martucci, E. Della Gaspera, SILAR deposition of metal oxide nanostructured films. Small 17(49), 2101666 (2021). https://doi.org/10.1002/smll.202101666

    Article  Google Scholar 

  40. C. Zhao, X. Zou, S. He, CdTeO3 Deposited Mesoporous NiO photocathode for a Solar Cell. J. Nanomater. 2014, 372381 (2014). https://doi.org/10.1155/2014/372381

    Article  Google Scholar 

  41. F. Caballero-Briones, J.L. Peña, A. Martel, A. Iribarren, O. Calzadilla, S. Jiménez-Sandoval, A. Zapata-Navarro, Structural analysis of Cd–Te–O films prepared by RF reactive sputtering. J. Non Cryst. Solids. 354(31), 3756 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.03.042

    Article  ADS  Google Scholar 

  42. J. Carmona-Rodríguez, R. Lozada-Morales, O. Jiménez-Sandoval, F. Rodríguez-Melgarejo, M. Meléndez-Lira, S.J. Jiménez-Sandoval, CdTeOx to CdTeO3 structural phase transition in as-grown polycrystalline films by reactive sputtering. J. Appl. Phys. 103(12), 123516 (2008). https://doi.org/10.1063/1.2939567

    Article  ADS  Google Scholar 

  43. F. Caballero-Briones, A. Zapata-Navarro, A. Martel, A. Iribarren, J.L. Peña, Compositional mixture in RF sputtered CdTe oxide films. Raman spectroscopy results. Superf. Vacio 16(3), 38 (2003)

    Google Scholar 

  44. A. Jayaraman, G.A. Kourouklis, A high pressure Raman study of TeO2 to 30 GPa and pressure-induced phase changes. Pramana 36(2), 133 (1991). https://doi.org/10.1007/BF02845698

    Article  ADS  Google Scholar 

  45. M. Ceriotti, F. Pietrucci, M. Bernasconi, Ab initio study of the vibrational properties of crystalline TeO2: The α, β, and γ phases. Phys. Rev. B 73(10), 104304 (2006). https://doi.org/10.1103/PhysRevB.73.104304

    Article  ADS  Google Scholar 

  46. A. Chagraoui, I. Yakine, A. Tairi, A. Moussaoui, M. Talbi, M. Naji, Glasses formation, characterization, and crystal-structure determination in the Bi2O3–Sb2O3–TeO2 system prepared in an air. J. Mater. Sci. 46(16), 5439 (2011). https://doi.org/10.1007/s10853-011-5485-9

    Article  ADS  Google Scholar 

  47. İ Kabalcı, G. Özen, M.L. Öveçoğlu, Microstructure and crystallization properties of TeO2-PbF2 glasses. J. Raman Spectrosc. 40(3), 272 (2009). https://doi.org/10.1002/jrs.2119

    Article  ADS  Google Scholar 

  48. A. Guillén-Cervantes, M. Becerril-Silva, H.E. Silva-López, J.S. Arias-Cerón, E. Campos-González, M. Pérez-González, O. Zelaya-Ángel, Structural and optical properties of CdTe + CdTeO3 nanocomposite films with broad blueish photoluminescence. J. Mater. Sci. Mater. Electron. 31(9), 7133 (2020). https://doi.org/10.1007/s10854-020-03284-z

    Article  Google Scholar 

  49. V. Srihari, V. Sridharan, T.R. Ravindran, S. Chandra, A.K. Arora, V.S. Sastry, C.S. Sundar, Raman scattering of cadmium oxide: in B1 phase. AIP Conf. Proc. 1349, 845 (2011). https://doi.org/10.1063/1.3606122

    Article  ADS  Google Scholar 

  50. Z.Y. Hang, C.V. Thompson, Grain growth and complex stress evolution during Volmer–Weber growth of polycrystalline thin films. Acta Mater. 67, 189 (2014). https://doi.org/10.1016/j.actamat.2013.12.031

    Article  ADS  Google Scholar 

  51. K. Oh, M. Han, K. Kim, Y. Heo, C. Moon, S. Park, S. Nam, Development and evaluation of cadmium telluride dosimeters for accurate quality assurance in radiation therapy. J. Inst. 11, C02040–C02048 (2016). https://doi.org/10.11113/mjfas.v5n1.283

    Article  Google Scholar 

  52. R. Hussin, N.S. Leong, N.S. Alias, Structural investigation of crystalline host phosphor cadmium tellurite systems. J. Fund. Sci. 5, 17–27 (2009). https://doi.org/10.1088/1748-0221/11/02/C02040

    Article  Google Scholar 

  53. Y.J. Chen, X.P. Yan, Chemical redox modulation of the surface chemistry of CdTe quantum dots for probing ascorbic acid in biological fluids. Small 5, 2012–2018 (2009). https://doi.org/10.1002/smll.200900291

    Article  Google Scholar 

  54. C. Zhao, X. Zou, S. He, CdTeO3 deposited mesoporous NiO photocathode for a solar cell. J. Nanomater. (2014). https://doi.org/10.1155/2014/372381

    Article  Google Scholar 

Download references

Funding

This work was supported by the Government of Ukraine (Ministry of Education and Science of Ukraine via project 0122U000129 and 0121U10942). In addition, the research of A.I.P was partly supported by the RADON project (GA 872494) within the H2020-MSCA-RISE-2019 call and COST Action CA20129 “Multiscale Irradiation and Chemistry Driven Processes and Related Technologies” (MultIChem). A.I.P. also thanks to the Institute of Solid-State Physics, University of Latvia. ISSP UL as the Center of Excellence is supported through the Framework Program for European universities, Union Horizon 2020, H2020-WIDESPREAD-01-2016-2017-TeamingPhase2, under Grant Agreement No. 739508, CAMART2 project.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, YS; methodology, YS, SK, IB and ZTK; software, YS and SK; validation YS and AIP; formal analysis; investigation, YS, VP, and AIP; resources, YS, IB, ZTK and AIP; writing—original draft preparation, YS; writing—review and editing, YS, SK, VP and AIP. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yana Suchikova or Anatoli I. Popov.

Ethics declarations

Conflict of interest

The author declares no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suchikova, Y., Kovachov, S., Bohdanov, I. et al. Study of the structural and morphological characteristics of the CdxTeyOz nanocomposite obtained on the surface of the CdS/ZnO heterostructure by the SILAR method. Appl. Phys. A 129, 499 (2023). https://doi.org/10.1007/s00339-023-06776-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06776-x

Keywords

Navigation