Skip to main content

Advertisement

Log in

Evaluation of apoptosis in human breast cancer cell (MDA-MB-231) induced by ZnO nanoparticles synthesized using Piper betle leaf extract as bio-fuel

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this investigation, zinc oxide nanoparticles (ZnO NPs) were produced by solution combustion-assisted technique utilising aqueous leaf extract of Piper betle (betel leaf) (PB). Phase formation and the particle size of ZnO-PB-NPs were ascertained by using X-ray diffraction. It was observed that the ZnO-PB-NPs crystallize in the hexagonal phase with an average crystallite size of 24 nm. The morphology, shape, and size of the NPs were studied by Scanning Electron Microscope and Transmission Electron Microscope (TEM). The elemental composition was analysed using energy-dispersive advanced X-ray spectroscopy. Further, Fourier-Transform Infrared (FTIR) spectroscopy confirmed the formation of ZnO bonding. Anticancer activity of ZnO-PB-NPs was evaluated in the MDA-MB-231, human breast cancer cells by MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. The study findings demonstrated that the ZnO-PB-NPs were able to induce significant cytotoxicity in human breast cancer cells in a dose-dependent manner. ZnO-PB-NPs treatment impaired the Clonogenic potential cells of breast cancer. Additionally, the biocompatibility with blood components of ZnO-PB-NPs was evaluated by blood hemolysis assay. It was observed that, ZnO NPs inhibited breast cancer cell growth and increased the induction of early apoptosis cell population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Not applicable.

References

  1. S. Wang, K. Cheng, K. Chen, C. Xu, P. Ma, G. Dang et al., Nanoparticle-based medicines in clinical cancer therapy. Nano Today 45, 101512 (2022). https://doi.org/10.1016/j.nantod.2022.101512

    Article  Google Scholar 

  2. H. Mohd Yusof, R. Mohamad, U.H. Zaidan et al., Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol 10, 57 (2019). https://doi.org/10.1186/s40104-019-0368-z

    Article  Google Scholar 

  3. M.C. Sportelli, C. Gaudiuso, A. Volpe, M. Izzi, R.A. Picca, A. Ancona, N. Cioffi, Biogenic synthesis of ZnO nanoparticles and their application as bioactive agents: a critical overview. Reactions 3, 423–441 (2022). https://doi.org/10.3390/reactions3030030

    Article  Google Scholar 

  4. P.G. Krishna, P.P. Ananthaswamy, T. Yadavalli, N.B. Mutta, A. Sannaiah, Y. Shivanna, ZnO nanopellets have selective anticancer activity. Mater. Sci. Eng. C 62, 919–926 (2016). https://doi.org/10.1016/j.msec.2016.02.039

    Article  Google Scholar 

  5. I. Shahine, N. Beydoun, J.J. Gaumet, E.-E. Bendeif, H. Rinnert, P. Magri, A. EnNaciri, P. Miska, S. Jradi, S. Akil, Pure, size tunable ZnO nanocrystals assembled into large area PMMA layer as efficient catalyst. Catalysts 9, 162 (2019). https://doi.org/10.3390/catal9020162

    Article  Google Scholar 

  6. R.A. Salinas, A. Orduña-Díaz, O. Obregon-Hinostroza, M.A. Dominguez, Biosensors based on zinc oxide thin-film transistors using recyclable plastic substrates as an alternative for real-time pathogen detection. Talanta 237, 122970 (2022). https://doi.org/10.1016/j.talanta.2021.122970

    Article  Google Scholar 

  7. H.-Q. Liu, C.-B. Yao, Y. Cai, H.-T. Yin, Synthesis, photoluminescence and photocatalytic characteristics of Ag–ZnO sandwich structures. J.Phys. Chem. Solids 165, 110697 (2022). https://doi.org/10.1016/j.jpcs.2022.110697

  8. P.G. Krishna, P. Chandra Mishra, M.M. Naika, M. Gadewar, P.P. Ananthaswamy, S. Rao, S.R. Boselin Prabhu, K.V. Yatish, H.G. Nagendra, M. Moustafa et al., Photocatalytic activity induced by metal nanoparticles synthesized by sustainable approaches: a comprehensive review. Front. Chem. 10, 917831 (2022). https://doi.org/10.3389/fchem.2022.917831

    Article  ADS  Google Scholar 

  9. J. Xu, Y. Huang, S. Zhu, N. Abbes, X. Jing, L. Zhang, A review of the green synthesis of ZnO nanoparticles using plant extracts and their prospects for application in antibacterial textiles. J. Eng. Fibers Fabr. 16, 15589250211046242 (2021). https://doi.org/10.1177/15589250211046242

    Article  Google Scholar 

  10. J. Liu, J. Ma, Y. Bao, J. Wang, H. Tang, L. Zhang, Polyacrylate/surface-modified ZnO nanocomposite as film-forming agent for leather finishing. Int. J. Polym. Mater. Polym. Biomater. 63, 809–814 (2014). https://doi.org/10.1080/00914037.2014.886217

  11. M. Manabeng, B.S. Mwankemwa, R.O. Ocaya, T.E. Motaung, T.D. Malevu, A review of the impact of zinc oxide nanostructure morphology on perovskite solar cell performance. Processes 2022, 10 (1803). https://doi.org/10.3390/pr10091803

    Article  Google Scholar 

  12. P.G. Krishna, P.P. Ananthaswamy, M. Gadewar, U. Bora, N.B. Mutta, In vitro antibacterial and anticancer studies of ZnO nanoparticles prepared by sugar fueled combustion. Synthesis 8, 24–29 (2017). https://doi.org/10.5185/amLett.2017.6424

    Article  Google Scholar 

  13. P.G. Krishna, P.P. Ananthaswamy, N.B. Mutta, K.G. Mariyappa, R. Singh, Comparison of antimicrobial and anticancer activity of ZnO nanoparticles prepared using different precursors by hydrothermal synthesis. J. Chem. Pharm. Sci. 10, 192–197 (2017)

    Google Scholar 

  14. G.K. Prashanth, P.A. Prashanth, P. Singh, B.M. Nagabhushana, C. Shivakumara, G.M. Krishnaiah et al., Effect of doping (with cobalt or nickel) and UV exposure on the antibacterial, anticancer, and ROS generation activities of zinc oxide nanoparticles. J. Asian Ceram. Soc. 8(4), 1175–1187 (2020). https://doi.org/10.1080/21870764.2020.1824328

    Article  Google Scholar 

  15. G.K. Prashanth, P.A. Prashanth, B.M. Nagabhushana, S. Ananda, H.G. Nagendra, R.C. Singh, In vitro antimicrobial, antioxidant and anticancer studies of ZnO nanoparticles synthesized by precipitation method. Adv. Sci. Eng. Med. 8, 306–313 (2016). https://doi.org/10.1166/asem.2016.1854

    Article  Google Scholar 

  16. G.K. Prashanth, P.A. Prashanth, M. Ramani, S. Ananda, B.M. Nagabhushana, G.M. Krishnaiah et al., Comparison of antimicrobial, antioxidant and anticancer activities of ZnO nanoparticles prepared by lemon juice and citric acid fueled solution combustion synthesis. BioNanoScience 9(4), 799–812 (2019). https://doi.org/10.1007/s12668-019-00670-8

    Article  Google Scholar 

  17. L. Palanikumar, S. Ramasamy, C. Balachandran, Antibacterial and cytotoxic response of nano zinc oxide in gram negative bacteria and colo 320 human adenocarcinoma cancer cells. Curr. Nanosci. 9, 469–478 (2013). https://doi.org/10.2174/1573413711309040009

    Article  ADS  Google Scholar 

  18. F. Namvar, H.S. Rahman, R. Mohamad, S. Azizi, P.M. Tahir, M.S. Chartrand, S.K. Yeap, Cytotoxic effects of biosynthesized zinc oxide nanoparticles on murine cell lines, Evid. Based Complement. Alternat. Med. 2015, 593014 (2015). https://doi.org/10.1155/2015/593014

  19. R. Wahab, M.A. Siddiqui, Q. Saquib, S. Dwivedi, J. Ahmad, J. Musarrat, A.A. AlKhedhairy, H.-S. Shin, ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surf. B: Biointerfaces 117, 267–276 (2014). https://doi.org/10.1016/j.colsurfb.2014.02.038

    Article  Google Scholar 

  20. I. Pujalte, I. Passagne, B. Brouillaud, M. Treguer, E. Durand, C. Ohayon-Courtes, B. L'Azou, Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part. Fibre Toxicol. 8, 10 (2011). https://doi.org/10.1186/1743-8977-8-10

  21. R. Guan, T. Kang, F. Lu, Z. Zhang, H. Shen, M. Liu, Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles. Nanoscale Res. Lett. 7, 602 (2012). https://doi.org/10.1186/1556-276X-7-602

    Article  ADS  Google Scholar 

  22. T. Kang, R. Guan, X. Chen, Y. Song, H. Jiang, J. Zhao, In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells. Nanoscale Res. Lett. 8, 496 (2013). https://doi.org/10.1186/1556-276X-8-496

    Article  ADS  Google Scholar 

  23. E. Taylor, T.J. Webster, Reducing infections through nanotechnology and nanoparticles. Int. J. Nanomed. 6, 1463–1473 (2011). https://doi.org/10.2147/IJN.S22021

    Article  Google Scholar 

  24. H. Mirzaei, M. Darroudi, Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram. Int. 43(1, Part B), 907–914 (2017). https://doi.org/10.1016/j.ceramint.2016.10.051

    Article  Google Scholar 

  25. Y. Hu, L. Sun, Z. Liu, T. Liu, Controlled solvothermal synthesis of ZnO nanoparticles using non-destructive Mg-based channel templates for enhanced photocatalytic performance. Mater. Chem. Phys. 299 (2023). https://doi.org/10.1016/j.matchemphys.2023.127525

  26. M. Lal, P. Sharma, L. Singh, C. Ram, Photocatalytic degradation of hazardous Rhodamine B dye using sol-gel mediated ultrasonic hydrothermal synthesized of ZnO nanoparticles. Results Eng. 17, 100890 (2023). https://doi.org/10.1016/j.rineng.2023.100890

  27. K.C. Patil, S.C. Aruna, T. Mimani, Combustion synthesis: an update. Curr. Opin. Solid State Mater. Sci. 6(6), 507–512 (2002). https://doi.org/10.1016/S1359-0286(02)00123-7

    Article  ADS  Google Scholar 

  28. K.C. Patil, M.S. Hegde, R. Tanu et al., Chemistry of Nanocrystalline Oxide Materials (World Scientific, Singapore, 2008). https://doi.org/10.1016/S1359-0286(02)00123-7

    Book  Google Scholar 

  29. N. Shobha, N. Nanda, A.S. Giresha, P. Manjappa, S. P, K.K. Dharmappa et al., Synthesis and characterization of Zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. Mater. Sci. Eng.: C 97, 842–850 (2019). https://doi.org/10.1016/j.msec.2018.12.023

    Article  Google Scholar 

  30. T. Nalina, Z.H.A. Rahim, The crude aqueous extract of Piper betle L. and its antibacterial effect towards Streptococcus mutans. Am. J. Biotechnol. Biochem. 13, 10–15 (2007). https://doi.org/10.3844/ajbbsp.2007.10.15

    Article  Google Scholar 

  31. L.S.R. Arambewela, L.D.A.M. Arawwawala, W.D. Ratnasooriya, Antidiabetic activities of aqueous and ethanolic extracts of Piper betle leaves in rats. J. Ethnopharmacol. 13, 239–245 (2005). https://doi.org/10.1016/j.jep.2005.06.016

    Article  Google Scholar 

  32. R. Hajare, V.M. Darvhekar, A. Shewale, V. Patil, Evaluation of antihistaminic activity of piper betel leaf in guinea pig. Afr. J. Pharm. Pharmacol. 13, 113–117 (2011)

    Google Scholar 

  33. N. Nur-Sazwi, T. Nalina, Z.H.A. Rahim, Antioxidant and cytoprotective activities of Piper betle, Areca catechu, Uncaria gambir and betel quid with and without calcium hydroxide. BMC Complement. Altern. Med. 13, 351 (2013). https://doi.org/10.1186/1472-6882-13-351

    Article  Google Scholar 

  34. C.K. Kokate, Practical Pharmacognosy (Vallabh Prakashan, New Delhi, 2000)

    Google Scholar 

  35. J.B. Harbone, Phytochemical Methods (Chapman and Hall, London, 1999)

    Google Scholar 

  36. P. Tiwari, B. Kumar, M. Kaur et al., Phytochemical screening and extraction: a review. Internationale Pharmaceutica Sciencia. 1, 98–106 (2011)

    Google Scholar 

  37. G.K. Prashanth, G.M. Krishnaiah, Chemical composition of the leaves of Azadiracta indica Linn (Neem). Int. J. Adv. Eng. Technol. Manag. Appl. Sci. 1(5), 21–31 (2014)

    Google Scholar 

  38. G.K. Prashanth, G.M. Krishnaiah, H.M. Sathyananda, Qualitative phytochemical screening and GCMS analysis of the leaves of Indigofera tinctoria. Int. J. Innov. Res. Sci. Eng. Technol. 4, 7544–7547 (2015). https://doi.org/10.15680/IJIRSET.2015.0408080

    Article  Google Scholar 

  39. G.K. Prashanth, G.M. Krishnaiah, Phytochemical screening and GC-MS analysis of the leaves of Pongamia Pinnata linn. Int. J. Innovative Res. Sci. Eng. Technol. 3(11), 17329–17334 (2014). https://doi.org/10.15680/IJIRSET.2014.0311034

    Article  Google Scholar 

  40. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983). https://doi.org/10.1016/0022-1759(83)90303-4

    Article  Google Scholar 

  41. G.K. Prashanth, H.M. Sathyananda, P.A. Prashanth, M. Gadewar, M. Mutthuraju, S.R. Boselin Prabhu et al., Controlled synthesis of Ag/CuO nanocomposites: evaluation of their antimycobacterial, antioxidant, and anticancer activities. Appl. Phys. A 128, 614 (2022). https://doi.org/10.1007/s00339-022-05748-x

    Article  ADS  Google Scholar 

  42. H.M. Sathyananda, P.A. Prashanth, G.K. Prashanth, B.M. Nagabhushana, C. Shivakumara, S.R. Boselin Prabhu et al., Evaluation of antimycobacterial, antioxidant, and anticancer activities of CuO nanoparticles through cobalt. Doping. Appl. Nanosci. (2021). https://doi.org/10.1007/s13204-021-02156-0

    Article  Google Scholar 

  43. H.M. Sathyananda, P.A. Prashanth, G.K. Prashanth, B.M. Nagabhushana, G.M. Krishnaiah, H.G. Nagendra, Antimicrobial, antioxidant, and cytotoxicity activities of CuO nanopellets synthesized by surfactant-free hydrothermal method. J. Test. Evaluat. (2021). https://doi.org/10.1520/JTE20200538

    Article  Google Scholar 

  44. P. Gopala Krishna, P. PaduvarahalliAnanthaswamy, P. Trivedi, V. Chaturvedi, N. Bhangi Mutta, A. Sannaiah et al., Antitubercular activity of ZnO nanoparticles prepared by solution combustion synthesis using lemon juice as bio-fuel. Mater. Sci. Eng. C 75, 1026–1033 (2017). https://doi.org/10.1016/j.msec.2017.02.09

    Article  Google Scholar 

  45. N.A.P. Franken, H.M. Rodermond, J. Stap, J. Haveman, C. van Bree, Clonogenic assay of cells in vitro. Nat. Protoc. 1(5), 2315–2319 (2006). https://doi.org/10.1038/nprot.2006.339

    Article  Google Scholar 

  46. J.S. Köerich, D.J. Nogueira, V.P. Vaz, C. Simioni, M.L.N.D. Silva, L.C. Ouriques, D.S. Vicentini, W.G. Matias, Toxicity of binary mixtures of Al2O3 and ZnO nanoparticles toward fibroblast and bronchial epithelium cells. J. Toxicol. Environ. Health A 83(9), 363–377 (2020). https://doi.org/10.1080/15287394.2020.1761496

    Article  Google Scholar 

  47. K. Rjiba-Touati, I. Ayed-Boussema, H. Hamdi, S. Abid, Genotoxic damage and apoptosis in rat glioma (F98) cell line following exposure to bromuconazole. Neurotoxicology 94, 108–116 (2023). https://doi.org/10.1016/j.neuro.2022.11.006

    Article  Google Scholar 

  48. M.C. Pico, A. Basulto, A. del Monte, A. Hidalgo, M.E. Lanio, C. Alvarez et al., Cross-reactivity and inhibition of haemolysis by polyclonal antibodies raised against St II, a cytolysin from the sea anemone Stichodactyla helianthus. Toxicon 43, 167–171 (2004). https://doi.org/10.1016/j.toxicon.2003.11.020

    Article  Google Scholar 

  49. D. Das, B.C. Nath, P. Phukon, S.K. Dolui, Colloid. Surf. B: Bio Interfaces. 101, 430–433 (2013)

    Article  Google Scholar 

  50. S. Biswal, Phytochemical analysis and a study on the antiestrogenic antifertility effect of leaves of Piper betel in female albino rat. Anc. Sci. Life. 34(1), 16–22 (2014). https://doi.org/10.4103/0257-7941.150770

    Article  Google Scholar 

  51. R. Rajamani, K. Selvam, S. Muthusamy, R. Devadass, Preliminary phytochemical screening of aqueous extract of betel nut and betel leaves. Int. J. Biosci. Nanosci. 3(1), 14–18 (2026)

    Google Scholar 

  52. N.M. Patel, D.D. Jain, H.P. Suryawanshi, S.P. Pawar, Phytopharmacological study of Piper Betle leaf, Saudi. J. Med. Pharm. Sci. (2019). https://doi.org/10.36348/sjmps.2019.v05i11.008

    Article  Google Scholar 

  53. A.K. Jha, K. Prasad, V. Kumar, K. Prasad, Biosynthesis of silver nanoparticles using eclipta leaf. Biotechnol. Prog. 25, 1476–1479 (2009). https://doi.org/10.1002/btpr.233

    Article  Google Scholar 

  54. S. Wongrerkdee, S. Wongrerkdee, C. Boonruang, S. Sujinnapram, Enhanced photocatalytic degradation of methylene blue using Ti-doped ZnO nanoparticles synthesized by rapid combustion. Toxics 11, 33 (2023). https://doi.org/10.3390/toxics11010033

    Article  Google Scholar 

  55. K. Handore, S. Bhavsar, A. Horne, P. Chhattise, K. Mohite, J. Ambekar, N. Pande, V. Chabukswar, Novel green route of synthesis of ZnO nanoparticles by using natural biodegradable polymer and its application as a catalyst for oxidation of aldehydes. J. Macromol. Sci. Part A 51(12), 941–947 (2014). https://doi.org/10.1080/10601325.2014.967078

    Article  Google Scholar 

  56. R.J. Gonzalez, J.B. Tarloff, Evaluation of hepatic subcellular fractions for Alamar blue and MTT reductase activity. Toxicol. In Vitro 15, 257–259 (2001). https://doi.org/10.1016/S0887-2333(01)00014-5

    Article  Google Scholar 

  57. L. Kangas, M. Grönroos, A.L. Nieminen, Bioluminescence of cellular ATP: a new method for evaluating cytotoxic agents in vitro. Med. Biol. 62, 338–343 (1984)

    Google Scholar 

  58. F. Blankenberg, J. Narula, H.W. Strauss, In vivo detection of apoptotic cell death: a necessary measurement for evaluating therapy for myocarditis, ischemia, and heart failure. J. Nucl. Cardiol. 6, 531–539 (1999). https://doi.org/10.1016/S1071-3581(99)90026-0

    Article  Google Scholar 

  59. M.A. Swairjo, N.O. Concha, M.A. Kaetzel, J.R. Dedman, B.A. Seaton, Ca2+-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat. Struct. Biol. 2, 968–974 (1995). https://doi.org/10.1038/nsb1195-968

    Article  Google Scholar 

  60. J. Zhang, L. Tan, C. Wu, Y. Li, H. Chen, Y. Liu et al., Discovery and biological evaluation of 4,6-pyrimidine analogues with potential anticancer agents as novel colchicine binding site inhibitors. Eur. J. Med. Chem. 248, 115085 (2023). https://doi.org/10.1016/j.ejmech.2022.115085

    Article  Google Scholar 

  61. I.K. Lindamulage, H.-Y. Vu, C. Karthikeyan, J. Knockleby, Y.-F. Lee, P. Trivedi et al., Novel quinolone chalcones targeting colchicine-binding pocket kill multidrug-resistant cancer cells by inhibiting tubulin activity and MRP1 function. Sci. Rep. 7, 10298 (2017). https://doi.org/10.1038/s41598-017-10972-0

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author Dr. Shobha Nagarajaiah is thankful to Dr. Shivashankarappa L.H., Principal, Maharani’s Science College for Women, Bengaluru for the support. Dr. Prashanth GK would like to express his gratitude to the management of Sri KET for the constant encouragement provided towards research activities.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, generation of the hypothesis, experimentation, and manuscript writing SN, PGK and NN; software analysis, SN, PGK, NN, PM, MGG, and SR; review and editing PGK, SN, and NN: revision plagiarism errors and proofread, PGK, SN, NN, PM, BMN, MG, and SR. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Shobha Nagarajaiah or Prashanth Gopala Krishna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajaiah, S., Nanda, N., Manjappa, P. et al. Evaluation of apoptosis in human breast cancer cell (MDA-MB-231) induced by ZnO nanoparticles synthesized using Piper betle leaf extract as bio-fuel. Appl. Phys. A 129, 461 (2023). https://doi.org/10.1007/s00339-023-06731-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06731-w

Keywords

Navigation