Skip to main content
Log in

Fabrication of ZnO/PDA/GO composite membrane for high efficiency oil–water separation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zinc oxide/polydopamine nanoparticles/graphene oxide (ZnO/PDA/GO) membranes are fabricated combining chemical and physical methods. In this process, magnetron sputtering is used to deposit ZnO seed layers for further growing uniform and dense ZnO nanorod arrays by hydrothermal method, and then ZnO nanorod arrays is decorated using PDA and GO. The surface morphologies and microstructure characterization indicate that ZnO/PDA/GO membrane with the layered stacked structures is successfully fabricated. Interestingly, ZnO/PDA/GO membrane not only reduced the pore size compared with the original Cu mesh, but also has hydrophilic/underwater superoleophobicity with an underwater oil contact angle higher than 150°. The oil–water separation process driven by gravity shows that the separation efficiency of the membrane for various oil–water mixtures is more than 99%, and it has excellent corrosion resistance and cycle stability. In addition, based on density functional theory (DFT), the double-sided saturated adsorption of water molecules on the model is constructed. The simulation results confirm theoretically that the oil–water separation of underwater superhydrophobic membrane is indeed due to the formation of hydration layer on the membrane surface. These results provides a new idea for the design and development of functional membranes for oil–water separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or used during the study appear in the submitted article.

References

  1. Y.Y. Liu, X. Wang, S.Y. Feng, Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil-water separation. Adv. Funct. Mater. 29, 1902488 (2019). https://doi.org/10.1002/adfm.201902488

    Article  Google Scholar 

  2. G.H. Chen, Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38, 11 (2004). https://doi.org/10.1016/j.seppur.2003.10.006

    Article  Google Scholar 

  3. A.A. Al-Shamrani, A. James, H. Xiao, Destabilisation of oil-water emulsions and separation by dissolved air flotation. Water Res. 36, 1503 (2002). https://doi.org/10.1016/S0043-1354(01)00347-5

    Article  Google Scholar 

  4. X.B. Hu, Y. Yu, J.E. Zhou, Y.Q. Wang, J. Liang, X.Z. Zhang, Q.B. Chang, L.X. Song, The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. J. Membr. Sci. 476, 200 (2015). https://doi.org/10.1016/j.memsci.2014.11.043

    Article  Google Scholar 

  5. X.J. Liu, L. Ge, W. Li, X.Z. Wang, F. Li, Layered double hydroxide functionalized textile for effective oil/water separation and selective oil adsorption. ACS Appl. Mater. Interfaces 7, 791 (2015). https://doi.org/10.1021/am507238y

    Article  Google Scholar 

  6. R.N. Zhang, Y.N. Liu, M.R. He, Y.L. Su, X.T. Zhao, M. Elimelech, Z.Y. Jiang, Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem. Soc. Rev. 45, 5888 (2016). https://doi.org/10.1039/C5CS00579E

    Article  Google Scholar 

  7. X.J. Zhang, Y.X. Zhao, S.J. Mu, C.M. Jiang, M.Q. Song, Q.R. Fang, M. Xue, S.L. Qiu, B.L. Chen, UiO-66-coated mesh membrane with underwater superoleophobicity for high-efficiency oil-water separation. ACS Appl. Mater. Interfaces 10, 17301 (2018). https://doi.org/10.1021/acsami.8b05137

    Article  Google Scholar 

  8. J.L. Yong, F. Chen, Q. Yang, J.L. Huo, X. Hou, Superoleophobic surfaces. Chem. Soc. Rev. 46, 4168 (2017). https://doi.org/10.1039/C6CS00751A

    Article  Google Scholar 

  9. X.F. Wang, J.Y. Yu, G. Sun, B. Ding, Electrospun nanofibrous materials: a versatile medium for effective oil/water separation. Mater. Today 19, 403 (2016). https://doi.org/10.1016/j.mattod.2015.11.010

    Article  Google Scholar 

  10. T.F. Huang, L. Zhang, H.L. Chen, C.J. Gao, Sol-gel fabrication of a non-laminated graphene oxide membrane for oil/water separation. J. Mater. Chem. A 3, 19517 (2015). https://doi.org/10.1039/C5TA04471E

    Article  Google Scholar 

  11. W.J. Tang, D. Sun, S.H. Liu, B.B. Li, W.W. Sun, J.W. Fu, B.J. Li, D.D. Hu, J.T. Yu, One step electrochemical fabricating of the biomimetic graphene skins with superhydrophobicity and superoleophilicity for highly efficient oil-water separation. Sep. Purif. Technol. 236, 116293 (2020). https://doi.org/10.1016/j.seppur.2019.116293

    Article  Google Scholar 

  12. X.Y. Li, D. Hu, K. Huang, C.F. Yang, Hierarchical rough surfaces formed by LBL self-assembly for oil-water separation. J. Mater. Chem. A 2, 11830 (2014). https://doi.org/10.1039/C4TA01569J

    Article  Google Scholar 

  13. Y.R. Chen, L.H. Chen, C.H. Chen, C.C. Ko, A. Huang, C.L. Li, C.J. Chuang, K.L. Tung, Hydrophobic alumina hollow fiber membranes for sucrose concentration by vacuum membrane distillation. J. Membr. Sci. 555, 250 (2018). https://doi.org/10.1016/j.memsci.2018.03.048

    Article  Google Scholar 

  14. A. Huang, C.C. Kan, S.C. Lo, L.H. Chen, D.Y. Su, J.F. Soesanto, C.C. Hsu, F.Y. Tsai, K.L. Tung, Nanoarchitectured design of porous ZnO@copper membranes enabled by atomic-layer-deposition for oil/water separation. J. Membr. Sci. 582, 120 (2019). https://doi.org/10.1016/j.memsci.2019.03.093

    Article  Google Scholar 

  15. Q. Zhou, N. Yang, L.H. Zhang, L.F. Zhang, J.S. Li, X.D. Yang, F.F. Peng, Y.L. Sun, Structural tailored ZnO@Cu2O heterostructure-decorated mesh with dual functionalities for oil/water separation and photodegradation. J. Alloys. Compd. 896, 162763 (2022). https://doi.org/10.1016/j.jallcom.2021.162763

    Article  Google Scholar 

  16. J.J. Ding, M.Q. Wang, Enhanced visible photoluminescence emission from multiple face-contact-junction ZnO nanorods coated with graphene oxide sheets. J. Appl. Phys. 115, 214304 (2014). https://doi.org/10.1063/1.4881176

    Article  ADS  Google Scholar 

  17. F. Kazemi, Y. Jafarzadeh, S. Masoumi, M. Rostamizadeh, Oil-in-water emulsion separation by PVC membranes embedded with GO-ZnO nanoparticles. J. Environ. Chem. Eng. 9, 104992 (2021). https://doi.org/10.1016/j.jece.2020.104992

    Article  Google Scholar 

  18. J. Wang, Q. Du, J.S. Luan, X.B. Zhu, J.H. Pang, ZnO nanoneedle-modified PEEK fiber felt for improving anti-fouling performance of oil/water separation. Langmuir 37, 7449 (2021). https://doi.org/10.1021/acs.langmuir.1c00838

    Article  Google Scholar 

  19. X.Y. Liu, S.T. Feng, C.H. Wang, D.Y. Yan, L. Chen, B. Wang, Wettability improvement in oil–water separation by nano-pillar ZnO texturing. Nanomaterials 12, 740 (2022). https://doi.org/10.3390/nano12050740

    Article  ADS  Google Scholar 

  20. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y.Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034

    Article  Google Scholar 

  21. J.J. Ding, M.Q. Wang, X.Y. Zhang, C.X. Ran, J.Y. Shao, Y.C. Ding, Physical deoxygenation of graphene oxide paper surface and facile in situ synthesis of graphene based ZnO films. Appl. Phys. Lett. 105, 233106 (2014). https://doi.org/10.1063/1.4903796

    Article  ADS  Google Scholar 

  22. Y.Q. Liu, Y.L. Zhang, X.Y. Fu, H.B. Sun, Bioinspired underwater superoleophobic membrane based on a graphene oxide coated wire mesh for efficient oil/water separation. ACS Appl. Mater. Interfaces 7, 20930 (2015). https://doi.org/10.1021/acsami.5b06326

    Article  Google Scholar 

  23. C.H. Ao, W. Yuan, J.Q. Zhao, X. He, X.F. Zhang, Q.Y. Li, T. Xia, W. Zhang, C.H. Lu, Superhydrophilic graphene oxide@electrospun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation. Carbohydr. Polym. 175, 216 (2017). https://doi.org/10.1016/j.carbpol.2017.07.085

    Article  Google Scholar 

  24. J.D. Dai, L.L. Wang, Y. Wang, S.J. Tian, X.H. Tian, A. Xie, R.L. Zhang, Y.S. Yan, J.M. Pan, Robust nacrelike graphene oxide-calcium carbonate hybrid mesh with underwater superoleophobic property for highly efficient oil/water separation. ACS Appl. Mater. Interfaces 12, 4482 (2020). https://doi.org/10.1021/acsami.9b18664

    Article  Google Scholar 

  25. Q.F. Cheng, L. Jiang, Z.Y. Tang, Bioinspired layered materials with superior mechanical performance. Acc. Chem. Res. 47, 1256 (2014). https://doi.org/10.1021/ar400279t

    Article  Google Scholar 

  26. A. Huang, L.H. Chen, C.C. Kan, T.Y. Hsu, S.E. Wu, K.K. Jana, K.L. Tung, Fabrication of zinc oxide nanostructure coated membranes for efficient oil/water separation. J. Membr. Sci. 566, 249 (2018). https://doi.org/10.1016/j.memsci.2018.09.007

    Article  Google Scholar 

  27. Y. Dong, J. Li, L. Shi, X.B. Wang, Z.G. Guo, W.M. Liu, Underwater superoleophobic graphene oxide coated meshes for the separation of oil and water. ChemComm 50, 5586 (2014). https://doi.org/10.1039/C4CC01408A

    Article  Google Scholar 

  28. H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426 (2007). https://doi.org/10.1126/science.1147241

    Article  ADS  Google Scholar 

  29. X. Wang, X. Peng, Y.J. Zhao, C.H. Yang, K.L. Qi, Y.D. Li, P.L. Li, Bio-inspired modification of superhydrophilic iPP membrane based on polydopamine and graphene oxide for highly antifouling performance and reusability. Mater. Lett. 255, 126573 (2019). https://doi.org/10.1016/j.matlet.2019.126573

    Article  Google Scholar 

  30. X.F. Feng, Z.X. Yu, R.X. Long, Y.X. Sun, M. Wang, X.H. Li, G.Y. Zeng, Polydopamine intimate contacted two-dimensional/two-dimensional ultrathin nylon basement membrane supported RGO/PDA/MXene composite material for oil-water separation and dye removal. Sep. Purif. Technol. 247, 116945 (2020). https://doi.org/10.1016/j.seppur.2020.116945

    Article  Google Scholar 

  31. B.M. Zhou, B.H. Bashir, Y. Liu, B.Q. Zhang, Facile construction and fabrication of a superhydrophobic copper mesh for ultraefficient oil/water separation. Ind. Eng. Chem. Res. 60, 8139 (2021). https://doi.org/10.1021/acs.iecr.1c01046

    Article  Google Scholar 

  32. X.H. Chen, L.H. Kong, D. Dong, G.B. Yang, L.G. Yu, J.M. Chen, P.Y. Zhang, Synthesis and characterization of superhydrophobic functionalized Cu(OH)2 nanotube arrays on copper foil. Appl. Surf. Sci. 255, 4015 (2009). https://doi.org/10.1016/j.apsusc.2008.10.104

    Article  ADS  Google Scholar 

  33. D.D. La, T.A. Nguyen, S. Lee, J.W. Kim, Y.S. Kim, A stable superhydrophobic and superoleophilic Cu mesh based on copper hydroxide nanoneedle arrays. Appl. Surf. Sci. 257, 5705 (2011). https://doi.org/10.1016/j.apsusc.2011.01.078

    Article  ADS  Google Scholar 

  34. Y.F. Qu, J.J. Ding, H.W. Fu, H.X. Chen, J.H. Peng, Investigation on tunable electronic properties of semiconducting graphene induced by boron and sulfur doping. Appl. Surf. Sci. 542, 148763 (2021). https://doi.org/10.1016/j.apsusc.2020.148763

    Article  Google Scholar 

  35. N. Srinivasan, M. Revathi, P. Pachamuthu, Surface and optical properties of undoped and Cu doped ZnO nanostructures. Optik 130, 422 (2017). https://doi.org/10.1016/j.ijleo.2016.10.080

    Article  ADS  Google Scholar 

  36. T. Touqeer, M.W. Mumtaz, H. Mukhtar, A. Irfan, S. Akram, A. Shabbir, U. Rashid, I.A. Nehdi, T.S.Y. Choong, Fe3O4-PDA-lipase as surface functionalized nano biocatalyst for the production of biodiesel using waste cooking oil as feedstock: Characterization and process optimization. Energies 13, 177 (2019). https://doi.org/10.3390/en13010177

    Article  Google Scholar 

  37. Y. Cheng, A. Barras, S. Lu, W. Xu, S. Szunerits, R. Boukherroub, Fabrication of superhydrophobic/superoleophilic functionalized reduced graphene oxide/polydopamine/PFDT membrane for efficient oil/water separation. Sep. Purif. Technol. 236, 116240 (2020). https://doi.org/10.1016/j.seppur.2019.116240

    Article  Google Scholar 

  38. Z. Durmus, B.Z. Kurt, A. Durmus, Synthesis and characterization of graphene oxide/zinc oxide (GO/ZnO) nanocomposite and its utilization for photocatalytic degradation of basic fuchsin dye. ChemistrySelect 4, 271 (2019). https://doi.org/10.1002/slct.201803635

    Article  Google Scholar 

  39. J.H. Li, H.M. Cheng, C.Y. Chan, P.F. Ng, L. Chen, B. Fei, J.H. Xin, Superhydrophilic and underwater superoleophobic mesh coating for efficient oil-water separation. RSC Adv. 5, 51537 (2015). https://doi.org/10.1039/C5RA06118K

    Article  ADS  Google Scholar 

  40. B. Shi, X.H. Jia, Z.G. Guo, An easy preparation of photo-response TiO2@copper wire mesh with quick on/off switchable superwetting for high efficiency oil-water separation. New J. Chem. 42, 17563 (2018). https://doi.org/10.1039/C8NJ03710H

    Article  Google Scholar 

  41. J.L. Song, S.D. Li, C.L. Zhao, Y. Lu, D.Y. Zhao, J. Sun, T. Roy, C.J. Carmalt, X. Deng, I.P. Parkin, A superhydrophilic cement-coated mesh: an acid, alkali, and organic reagent-free material for oil/water separation. Nanoscale 10, 1920 (2018). https://doi.org/10.1039/C7NR06756A

    Article  Google Scholar 

  42. P. Raturi, K. Yadav, J.P. Singh, ZnO-nanowires-coated smart surface mesh with reversible wettability for efficient on-demand oil/water separation. ACS Appl. Mater. Interfaces 9, 6007 (2017). https://doi.org/10.1021/acsami.6b14448

    Article  Google Scholar 

  43. L.Y. Liu, C. Chen, S.Y. Yang, H. Xie, M.G. Gong, X.L. Xu, Fabrication of superhydrophilic-underwater superoleophobic inorganic anti-corrosive membranes for high-efficiency oil/water separation. Phys. Chem. Chem. Phys. 18, 1317 (2016). https://doi.org/10.1039/C5CP06305A

    Article  Google Scholar 

  44. R. Gholizadeh, Y.X. Yu, Y.J. Wang, N2O adsorption and decomposition over ZnO(0001) doped graphene: density functional theory calculations. Appl. Surf. Sci. 420, 944 (2017). https://doi.org/10.1016/j.apsusc.2017.05.235

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors thanks Professor Bing Xiao of Xi’an Jiaotong University for his help in software simulation calculation. This work is supported by the National Natural Science Foundations of China (Grant No. 11804273), Key Research and Development Projects of Shaanxi Province (Grant No. 2019GY-170), Graduate Student Innovative and Practical Ability Training Program of Xi’an Shiyou University (Grant No. YCS21111033).

Author information

Authors and Affiliations

Authors

Contributions

JD: Conceptualization, Supervision, Methodology. ZM: Data curation, Investigation, Writing- Original draft preparation, Methodology, Software. HC: Visualization, Writing- Reviewing and Editing. XZ: Validation, Data curation. HF: Writing- Reviewing and Editing.

Corresponding author

Correspondence to Jijun Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Mao, Z., Chen, H. et al. Fabrication of ZnO/PDA/GO composite membrane for high efficiency oil–water separation. Appl. Phys. A 129, 369 (2023). https://doi.org/10.1007/s00339-023-06654-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06654-6

Keywords

Navigation