Skip to main content
Log in

Cobalt ion implantation assisted modifications in luminescence, surface states, structural and morphological properties of MgTiO3 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, the effects of ion implantation on structural, surface, optical, and photoluminescence behavior of MgTiO3 thin films have been investigated. Cobalt ions were implanted into crystalline films by varying the fluence from 3 × 1014 to 1 × 1016 ions/cm2. An intensity reduction and shift of the peak position upon implantation are attributed to amorphization and generation of strain, respectively. The root-mean-square roughness is reduced from 8.2 (pristine) to 6.4 nm upon implantation at 3 × 1014 ions/cm2 fluence and increases to 7.9 nm with a further upsurge in fluence. A non-monotonous variation in transmittance with implantation fluence is observed. The bandgap of pristine sample is ~ 4.22 eV, and the implanted samples exhibit a bandgap in the range of 4.03–3.88 eV. The surface chemical states of pristine and implanted films were analyzed using X-ray photoelectron spectroscopy. An enhancement in defects upon implantation of Co ions results in the variation of luminescence properties. A broad photoluminescence (PL) emission band extending from near UV to visible region is observed for the pristine film. The PL emission intensity is quenched upon implantation. Average decay lifetime of pristine film is observed to be 17.9 ns, which is slightly increased to 19.1 ns at 3 × 1014 ions/cm2 implantation fluence. Afterward, with a subsequent rise in implantation fluence from 1 × 1015 to 1 × 1016 ions/cm2, the average decay lifetime varied within the range of 17.2–18.9 ns. Factors responsible for different luminescent centers, structure, and morphology evolution as a consequence of Co ion implantation are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. E. Korkmaz, N.O. Kalaycioglu, V.E. Kafadar, Yellow phosphors doping with Gd3+, Tb3+ and Lu3+ in MTiO3 (M = Mg and Sr) luminescence properties. Bull. Mater. Sci. 36, 1079 (2013)

    Google Scholar 

  2. X.C. Liu, R. Hong, C. Tian, Tolerance factor and the stability discussion of ABO3-type ilmenite. J Mater Sci: Mater Electron 20, 323 (2009)

    Google Scholar 

  3. X. Zhou, Y. Yuan, L. Xiang, Y. Huang, Synthesis of MgTiO3 by solid state reaction and characteristics with addition. J. Mater. Sci. 42, 6628 (2007)

    ADS  Google Scholar 

  4. K. Wakino, Recent development of dielectric resonator materials and filters in japan. Ferroelectrics 91, 69 (1989)

    ADS  Google Scholar 

  5. J. Zhang, Z. Yue, Y. Luo, L. Li, MgTiO3/TiO2/MgTiO3: An ultrahigh-Q and temperature-stable microwave dielectric ceramic through cofired trilayer architecture. Ceram. Int. 44, 21000 (2018)

    Google Scholar 

  6. C.L. Huang, C.L. Pan, Structure and electrical properties of MgTiO3 thin films deposited by RF magnetron sputtering. J. Vac. Sci. Technol. A 22, 2440 (2004)

    Google Scholar 

  7. C. S. Hwang, K. Do, C. H. Lee, Taegu, Ferroelectric structure including MgTiO3 passivation. United States Patent 5834804 (1998)

  8. L. Wang, G. Yang, S. Peng, J. Wang, D. Ji, W. Yan, S. Ramakrishna, Fabrication of MgTiO3 nanofibers by electrospinning and their photocatalytic water splitting activity. Int. J. Hydrogen Energy 42, 25882 (2017)

    Google Scholar 

  9. R.S. Yadav, Monika, E. Rai, L.P. Purohit, S.B. Rai, Realizing enhanced downconversion photoluminescence and high color purity in Dy doped MgTiO3 phosphor in presence of Li+ ion. J. Lumin. 217, 116810 (2020)

    Google Scholar 

  10. J. Zhang, J. Yin, P. Liu, B. Gao, L. Bie, Preparation and luminescent properties of MgTiO3:Eu3+ phosphor for white LEDs. J. Rare Earths 30, 1009 (2012)

    Google Scholar 

  11. N. Kuganathan, P. Iyngaran, R. Vovk, A. Chroneos, Defects, dopants and Mg diffusion in MgTiO3. Sci. Rep. 9, 4394 (2019)

    ADS  Google Scholar 

  12. J.H. Sohn, Y. Inaguma, S.O. Yoon, M. Itoh, T. Nakamura, S.J. Yoon, H.J. Kim, Microwave dielectric characteristics of ilmenite-type titanates with high Q values. Jpn. J. Appl. Phys. 33, 5466 (1994)

    ADS  Google Scholar 

  13. T.S. Kumar, P. Gogoi, S. Bhasaiah, K.C.J. Raju, D. Pamu, Structural, optical and microwave dielectric studies of Co doped MgTiO3 thin films fabricated by RF magnetron sputtering. Mater. Res. Express 2, 056403 (2015)

    ADS  Google Scholar 

  14. T.S. Kumar, P. Gogoi, S. Thota, D. Pamu, Structural and dielectric studies of Co doped MgTiO3 thin films fabricated by RF magnetron sputtering. AIP Adv. 4, 067142 (2014)

    ADS  Google Scholar 

  15. Y.N. Shieh, Y.Y. Chang, Influence of cobalt ion implantation on optical properties of titanium dioxide thin films. Thin Solid Films 518, 7464 (2010)

    ADS  Google Scholar 

  16. M. I. Khan, M. Sabir, G. M. Mustafa, M. Fatima, A. Mahmood, S. A. Abubshaitd, H. A. Abubshait, M. Iqbal 300 keV cobalt ions irradiations effect on the structural, morphological, optical and photovolatic properties of Zn doped TiO2 thin films based dye sensitized solar cells. Ceram. Int. 46, 16813 (2020)

  17. J. Xu, S. Shi, L. Li, X. Zhang, Y. Wang, X. Chen, J. Wang, L. Lv, F. Zhang, W. Zhong, Structural, optical, and ferromagnetic properties of Co-doped TiO2 films annealed in vacuum. J. Appl. Phys. 107, 053910 (2010)

    ADS  Google Scholar 

  18. R. Kumar, F. Singh, B. Angadi, J.W. Choi, W.K. Choi, K. Jeong, J.H. Song, M.W. Khan, J.P. Srivastava, A. Kumar, R.P. Tandon, Single phase formation of Co-implanted ZnO thin films by swift heavy ion irradiation: Optical studies. J. Appl. Phys. 100, 113708 (2006)

    ADS  Google Scholar 

  19. S. Zhou, K. Potzger, G. Talut, H. Reuther, J.V. Borany, R. Grotzschel, W. Skorupa, M. Helm, J. Fassbender, Fe-implanted ZnO: Magnetic precipitates versus dilution. J. Appl. Phys. 103, 023902 (2008)

    ADS  Google Scholar 

  20. I.P. Jain, G. Agarwal, Ion beam induced surface and interface engineering. Surf. Sci. Rep. 66, 77 (2011)

    ADS  Google Scholar 

  21. Kriti, P. Kaur, S. Chalotra, R. Nongjai, I. Sulania, A. Kandasami, D. P. Singh, Effect of 150 keV Ti+ ion implantation on the structural, optical, and electrical properties of nonstoichiometric WO2.72 thin film. Mater. Res. Bull. 145, 111566 (2022)

  22. D.R. Kumar, K.S. Ranjith, Y. Haldorai, A. Kandasami, R.T.R. Kumar, Nitrogen-implanted ZnO Nanorod arrays for visible light photocatalytic degradation of a pharmaceutical drug acetaminophen. ACS Omega 4, 11973 (2019)

    Google Scholar 

  23. A. Audren, A. Hallen, M.K. Linnarsson, G. Possnert, Damage recovery in ZnO by post-implantation annealing. Nucl. Inst. Methods Phys. Res. B 268, 1842 (2010)

    ADS  Google Scholar 

  24. R. Shyam, D. Negi, K. Shekhawat, F. Singh, D. Devi, P. Vashishtha, G. Gupta, S. Pandey, P. Dobbidi, S.R. Nelamarri, Tailoring of physical properties of (K, Na)NbO3 thin films using lithium ion implantation. Results Phys. 47, 106330 (2023)

    Google Scholar 

  25. A.M. Galvan, C.T. Cruz, Effect of metal-ion doping on the optical properties of nanocrystalline ZnO thin films. J. Appl. Phys. 99, 014306 (2006)

    ADS  Google Scholar 

  26. C. Liu, B. Mensching, K. Volz, B. Rauschenbach, Lattice expansion of Ca and Ar ion implanted GaN. Appl. Phys. Lett. 71, 2313 (1997)

    ADS  Google Scholar 

  27. P. Mallick, C. Rath, J. Prakash, D.K. Mishra, R.J. Choudhary, D.M. Phase, A. Tripathi, D.K. Avasthi, D. Kanjilal, N.C. Mishra, Swift heavy ion irradiation induced modification of the microstructure of NiO thin films. Nucl. Inst. Methods Phys. Res. B 268, 1613 (2010)

    ADS  Google Scholar 

  28. S. Shanmugan, D. Mutharasu, An effect of N+ ion bombardment on the properties of CdTe thin films. Radiat. Phys. Chem. 81, 201 (2012)

    ADS  Google Scholar 

  29. B.D. Cullity, Elements of X-Ray Diffraction, 2nd Edition, Addison-Wesley, 1978

  30. C. Suryanarayana, M.G. Norton, X-Rays and Diffraction (Springer, US, Boston, 1998)

    Google Scholar 

  31. U. Valbusa, C. Boragno, F.B.D. Mongeot, Nanostructuring surfaces by ion sputtering. J. Phys. Condens. Matter 14, 8153 (2002)

    ADS  Google Scholar 

  32. A. Galdikas, Non-monotonous dependence of surface roughness on factors influencing energy of adatoms during thin island film growth. Surf. Sci. 600, 2705 (2006)

    ADS  Google Scholar 

  33. V. Solanki, S. Majumder, I. Mishra, P. Dash, C. Singh, D. Kanjilal, S. Varma, Enhanced anomalous photo-absorption from TiO2 nanostructures. J. Appl. Phys. 115, 124306 (2014)

    ADS  Google Scholar 

  34. S.R. Joshi, A. Chanda, D. Kanjilal, S. Varma, Scaling studies of self-affine nanopatterned TiO2 surfaces created via ion implantation. Thin Solid Films 639, 145 (2017)

    ADS  Google Scholar 

  35. D.C. Agarwal, R.S. Chauhan, D.K. Avasthi, S.A. Khan, D. Kabiraj, I. Sulania, Formation of self-affine nanostructures on ZnO surfaces by swift heavy ions. J. Appl. Phys. 104, 024304 (2008)

    ADS  Google Scholar 

  36. D. Song, E.C. Cho, G. Conibeer, Y.H. Cho, Y. Huang, S. Huang, C. Flynn, M.A. Green, Fabrication and characterization of Si nanocrystals in SiC matrix produced by magnetron cosputtering. J. Vac. Sci. Technol. B 25, 1327 (2007)

    Google Scholar 

  37. T.G. Lei, H.H. Bo, S.J. Da, Effects of microstructure of TiO2 thin films on optical band gap energy. Chin. Phys. Lett. 22, 1787 (2005)

    ADS  Google Scholar 

  38. G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 47, 1480 (1981)

    ADS  Google Scholar 

  39. M.M. Soraya, Structural and optical properties of Se85−xTe15Inx chalcogenide thin flms for optoelectronics. Appl. Phys. A 126, 590 (2020)

    ADS  Google Scholar 

  40. J. Tauc, Optical properties of amorphous Semiconductors, Amorphous and liquid semiconductors (Springer, Boston, MA, 1974)

    Google Scholar 

  41. D. Negi, R. Shyam, P. Vashishtha, G. Gupta, F. Singh, S.R. Nelamarri, Impact of high energy ion irradiation on structural, morphological, optical and photoluminescence properties of MgTiO3 thin films. J. Lumin. 249, 119051 (2022)

    Google Scholar 

  42. A. Majid, A. Ali, Band tailing effects in neon-implanted GaN. J. Appl. Phys. 106, 123528 (2009)

    ADS  Google Scholar 

  43. H. Saraswat, S. Chaudhary, M. Varshney, D. Devi, F. Singh, S.O. Won, H.J. Shin, A. Sharma, 150 KeV Cu- ion- implantation in SrVO3 thin films: A study of Cu induced defect states. Vacuum 181, 109655 (2020)

    ADS  Google Scholar 

  44. A. Shah, A. Mahmood, Effect of Cr implantation on structural and optical properties of AlN thin films. Physica B 407, 3987 (2012)

    ADS  Google Scholar 

  45. G. Greczynski, L. Hultman, C 1s peak of adventitious carbon aligns to the vacuum level: Dire consequences for material’s bonding assignment by photoelectron spectroscopy. ChemPhysChem 18, 1507 (2017)

    Google Scholar 

  46. H.B. Yao, Y. Li, A.T.S. Wee, An XPS investigation of the oxidation/corrosion of melt spun Mg. Appl. Surf. Sci. 158, 112 (2000)

    ADS  Google Scholar 

  47. K. Ami, T. Isobe, M. Senna, Physical and chemical interactions in multi-component composite particles prepared by mechanical stressing. Powder Technol. 100, 46 (1998)

    Google Scholar 

  48. D. Pukazhselvan, N. Nasani, T. Yang, D. Ramasamy, A. Shaula, D.P. Fagg, Chemically transformed additive phases in Mg2TiO4 and MgTiO3 loaded hydrogen storage system MgH2. Appl. Surface Sci. 472, 99 (2019)

    ADS  Google Scholar 

  49. D. Jaeger, J. Patscheider, A complete and self-consistent evaluation of XPS spectra of TiN. J. Electron Spectros. Relat. Phenomena 185, 523 (2012)

    Google Scholar 

  50. A. Manna, A. Barman, S.R. Joshi, B. Satpati, P. Dash, A. Chattaraj, S.K. Srivastava, P.K. Sahoo, A. Kanjilal, D. Kanjilal, S. Varma, The effect of Ti+ ion implantation on the anatase-rutile phase transformation and resistive switching properties of TiO2 thin films. J. Appl. Phys. 124, 155303 (2018)

    ADS  Google Scholar 

  51. F. Guillemot, M.C. Port, C. Labrugere, Ch. Baquey, Ti4+ to Ti3+ Conversion of TiO2 Uppermost Layer by Low-Temperature Vacuum Annealing: Interest for Titanium Biomedical Applications. J. Colloid Interface Sci. 255, 75 (2002)

    ADS  Google Scholar 

  52. Z. Fang, H. Yang, H. Yang, Z. Xiong, X. Zhang, P. Zhao, B. Tang, Ilmenite-type MgTiO3 ceramics by complex (Mn1/2W1/2)4+ cation co-substitution producing improved microwave characteristics. Ceram. Int. 47, 21388 (2021)

    Google Scholar 

  53. I. Spasojevic, G. Sauthier, J.M. Caicedo, A. Verdaguer, N. Domingo, Oxidation processes at the surface of BaTiO3 thin films under environmental conditions. Appl. Surf. Sci. 565, 50288 (2021)

    ADS  Google Scholar 

  54. B.K. Ostafiychuk, V.D. Fedoriv, I.P. Yaremiy, O.Z. Garpul, V.V. Kurovets, I.C. Yaremiy, Implantation of single crystalline iron garnet thin films with He+, B+, and Si+ ions. Phys. Status Solidi A 208, 2108 (2011)

    ADS  Google Scholar 

  55. X. Wang, J. Li, J. Wang, J. Song, F. Zhao, H. Tang, B.S. Li, A.L. Xiong, Microstructure investigation of damage recovery in SiC by swift heavy ion irradiation. Mater. Design Process. Commun. 1, e87 (2019)

    Google Scholar 

  56. M.J. Jackman, A.G. Thomas, C. Muryn, Photoelectron spectroscopy study of stoichiometric and reduced anatase TiO2(101) surfaces: The effect of subsurface defects on water adsorption at near-ambient pressures. J. Phys. Chem. 119, 13682 (2015)

    Google Scholar 

  57. J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2, 1319 (2000)

    Google Scholar 

  58. E.A.V. Ferri, T.M. Mazzo, V.M. Longo, E. Moraes, P.S. Pizani, M.S. Li, J.W.M. Espinosa, J.A. Varela, E. Longo, Very intense distinct blue and red photoluminescence emission in MgTiO3 thin films prepared by the polymeric precursor method: An experimental and theoretical approach. J. Phys. Chem. C 116, 15557 (2012)

    Google Scholar 

  59. V.M. Longo, A.T.D. Figueiredo, S.D. Lazaro, M.F. Gurgel, M.G.S. Costa, C.O.P. Santos, J.A. Varela, E. Longo, V.R. Mastelaro, F.S.D. Vicente, A.C. Hernandes, R.W.A. Franco, Structural conditions that leads to photoluminescence emission in SrTiO3: An experimental and theoretical approach. J. Appl. Phys. 104, 023515 (2008)

    ADS  Google Scholar 

  60. R.G. Singh, H. Gupta, R.M. Mehra, F. Singh, Tuning of defects induced visible photoluminescence by swift heavy ion irradiation and thermal annealing in zinc oxide films. Radiat. Phys. Chem. 183, 109400 (2021)

    Google Scholar 

  61. H. Gupta, J. Singh, R.N. Dutt, S. Ojha, S. Kar, R. Kumar, V.R. Reddy, F. Singh, Defects induced photoluminescence from gallium doped zinc oxide thin films: Influence of doping and energetic ion irradiation. Phys. Chem. Chem. Phys. 21, 15019 (2019)

    Google Scholar 

  62. I. Sakaguchi, D. Park, Y. Takata, S. Hishita, N. Ohashi, H. Haneda, T. Mitsuhashi, An effect of annealing on In implanted ZnO. Nucl. Inst. Methods Phys. Res. B 206, 153 (2003)

    ADS  Google Scholar 

  63. B. Choudhury, A. Choudhury, Luminescence characteristics of cobalt doped TiO2 nanoparticles. J. Lumin. 132, 178 (2012)

    Google Scholar 

  64. M.R. Wagner, G. Callsen, J.S. Reparaz, J.H. Schulze, R. Kirste, M. Cobet, I.A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers. Phys. Rev. B 84, 035313 (2011)

    ADS  Google Scholar 

  65. J. Panigrahi, P.K. Singh, G. Gupta, Vandana, Growth and luminescence characteristics of zinc oxide thin films deposited by ALD technique. J. Lumin. 233, 117797 (2021)

    Google Scholar 

Download references

Acknowledgements

DN acknowledges Council of Scientific and Industrial Research, New Delhi, India for providing CSIR–SRF fellowship. NSR thanks Inter-University Accelerator Centre (IUAC), New Delhi, India for the ion implantation facility under project number UFR—64332. We are also thankful to Materials Research Centre, MNIT Jaipur for synthesis and characterization facilities. Authors are grateful to Prof. Kanupriya Sachdev and Dr. Kamlendra Awasthi, Department of Physics, MNIT Jaipur, Rajasthan, for annealing and UV–Vis–NIR spectroscopy facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasa Rao Nelamarri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, D., Shyam, R., Shekhawat, K. et al. Cobalt ion implantation assisted modifications in luminescence, surface states, structural and morphological properties of MgTiO3 thin films. Appl. Phys. A 129, 389 (2023). https://doi.org/10.1007/s00339-023-06653-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06653-7

Keywords

Navigation