Skip to main content
Log in

Fano resonances in graphene coated refractory nitride nanoshell and nanomatryoshka for sensing food adulteration

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recent advancements in nanotechnology have made it feasible to excite, control and tune Fano resonance in plasmonic nanosystems, especially through structural and material engineering. Because of various applications in areas such as refractive-index sensing, surface enhanced Raman scattering, and biosensing among others, considerable attention has been devoted to increase the sensitivity of Fano resonance based sensors. In this article, the formation of Fano resonances in graphene-assisted concentric nanoshell and nanomatryoshka is investigated using Mie theory, and the results have been validated using FEM-based COMSOL Multiphysics. It is shown that Fano resonances strongly depend on the chemical potential of graphene and the refractive index of the embedding environment. This makes these nanoparticle systems ultrasensitive sensors for sensing food adulteration. Refractory nitrides (e.g., ZrN and TiN) based plasmonic nanoshell and nanomatryoshka sensor designs optimized for maximum sensitivity are proposed with sensitivity up to 799.02 nm/RIU, representing a 120% increase in the sensitivity from the previous highest reported values. The present work paves way for developing highly sensitive Fano resonance based sensors with applications in diverse fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. A.G. Brolo, Plasmonics for future biosensors. Nat. Photonics 6, 709 (2012)

    ADS  Google Scholar 

  2. S.I. Azzam, A.V. Kildishev, R. Ma, C. Ning, R. Oulton, V.M. Shalaev, M.I. Stockman, J. Xu, X. Zhang, Ten years of spasers and plasmonic nanolasers. Light Sci. Appl. 9, 1 (2020)

    Google Scholar 

  3. M. Tetseo, P. Deb, S. Daimary, J.C. Dhar, CuO nanowire-based metal semiconductor metal infrared photodetector. Appl. Phys. A 127, 1 (2021)

    Google Scholar 

  4. M.S. Shishodia, A.G.U. Perera, Heterojunction plasmonic midinfrared detectors. J. Appl. Phys. 109, 043108 (2011)

    ADS  Google Scholar 

  5. M.S. Shishodia, S. Juneja, Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle. J. Appl. Phys 119, 203104 (2016)

    ADS  Google Scholar 

  6. N. Mattiucci, G. D’Aguanno, M.J. Bloemer, Mode-matched Fano resonances for all-optical switching applications. Opt. Commun. 285, 1945 (2012)

    ADS  Google Scholar 

  7. J. Divya, S. Selvendran, A.S. Raja, A. Sivasubramanian, Surface plasmon based plasmonic sensors: a review on their past, present and future. Biosens. Bioelectron. 10, 100175 (2022)

    Google Scholar 

  8. D. Agarwal, C.O. Aspetti, M. Cargnello, M. Ren, J. Yoo, C.B. Murray, R. Agarwal, Engineering localized surface plasmon interactions in gold by silicon nanowire for enhanced heating and photocatalysis. Nano Lett. 17, 1839 (2017)

    ADS  Google Scholar 

  9. M.B. Newmai, N.K. Pathak, P.S. Kumar, Molecular aspects of oligomer-coupled ultra-small Au nanoparticles. J. Phys. Chem. Solids 140, 109378 (2020)

    Google Scholar 

  10. P. Pathania, M.S. Shishodia, Gain-assisted transition metal ternary nitrides (Ti1-xZrxN) core-shell based sensing of waterborne bacteria in drinking water. Plasmonics 14, 1435 (2019)

    Google Scholar 

  11. P. Gu, X. Cai, G. Wu, C. Xue, J. Chen, Z. Zhang, Z. Yan et al., Ultranarrow and tunable Fano resonance in Ag nanoshells and a simple Ag nanomatryushka. Nanomaterials 11, 2039 (2021)

    Google Scholar 

  12. M.F. Limonov, M.V. Rybin, A.N. Poddubny, Y.S. Kivshar, Fano resonances in photonics. Nat. Photonics 11, 543 (2017)

    Google Scholar 

  13. L. Zhang, X. Liu, J. Zhou, Tuning Fano resonance by plasmonic core–shell nanostructure. Opt. Commun. 407, 137 (2018)

    ADS  Google Scholar 

  14. X. Zhu, H. Shi, S. Zhang, Q. Liu, H. Duan, Constructive-interference-enhanced Fano resonance of silver plasmonic heptamers with a substrate mirror: a numerical study. Opt. Express 25, 9938 (2017)

    ADS  Google Scholar 

  15. X. Sun, L. Wosinski, L. Thylén, Nanoscale surface plasmon polariton disk resonators, a theoretical analysis. IEEE J Sel Top Quantum Electron 22, 231 (2015)

    ADS  Google Scholar 

  16. Z.J. Yang, Z.S. Zhang, Z.H. Hao, Q.Q. Wang, Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter. Appl. Phys. Lett. 99, 081107 (2011)

    ADS  Google Scholar 

  17. H. Liu, L. Zheng, P. Ma, Y. Zhong, B. Liu, X. Chen, H. Liu, Metasurface generated polarization insensitive Fano resonance for high-performance refractive index sensing. Opt. Express 27, 13252 (2019)

    ADS  Google Scholar 

  18. Y. Sun, Y. Xia, Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal. Chem. 74, 5297 (2002)

    Google Scholar 

  19. N. Nath, A. Chilkoti, Label free colorimetric biosensing using nanoparticles. J. Fluoresc. 14, 377 (2004)

    Google Scholar 

  20. N. Nath, A. Chilkoti, A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem. 74, 504 (2002)

    Google Scholar 

  21. A.J. Haes, R.P.V. Duyne, A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124, 10596 (2002)

    Google Scholar 

  22. Y. Cheng, X.S. Mao, C. Wu, L. Wu, R.Z. Gong, Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing. Opt. Mater. 53, 195 (2016)

    ADS  Google Scholar 

  23. Z. Chen, X. Lan, Y.C. Chiu, X. Lu, W. Ni, H. Gao, Q. Wang, Strong chiroptical activities in gold nanorod dimers assembled using DNA origami templates. ACS Photonics 2, 392 (2015)

    Google Scholar 

  24. H. Wang, H. Zhao, G. Hu, S. Li, H. Su, J. Zhang, Graphene based surface plasmon polariton modulator controlled by ferroelectric domains in lithium niobate. Sci. Rep. 5, 8 (2015)

    Google Scholar 

  25. A. Singh, M.S. Shishodia, Graphene vs. silica coated refractory nitrides based core-shell nanoparticles for nanoplasmonic sensing. Phys. E Low Dimens. Syst. Nanostruct. 124, 114288 (2020)

    Google Scholar 

  26. Z. Mohammadi, S.M. Jafari, Detection of food spoilage and adulteration by novel nanomaterial-based sensors. Adv. Colloid Interface Sci 286, 102297 (2020)

    Google Scholar 

  27. R. Singh, S. Kumar, F.Z. Liu, C. Shuang, B. Zhang, R. Jha, B.K. Kaushik, Etched multicore fiber sensor using copper oxide and gold nanoparticles decorated graphene oxide structure for cancer cells detection. Biosens. Bioelectron. 168, 112557 (2020)

    Google Scholar 

  28. X. Wang, Y. Wang, X. Yang, Y. Cao, Numerical simulation on the LSPR-effective core-shell copper/graphene nanofluids. Sol. Energy 181, 439 (2019)

    ADS  Google Scholar 

  29. T. Naseri, N. Daneshfar, M.M. Dangi, F.E. Malaee, Terahertz optical bistability of graphene-coated cylindrical core–shell nanoparticles. J. Theor. Appl. Phys. 12, 257 (2018)

    ADS  Google Scholar 

  30. C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 2008)

    Google Scholar 

  31. Z.S. Wu, Y.P. Wang, Electromagnetic scattering for multilayered sphere: recursive algorithms. Radio Sci. 26, 1393 (1991)

    ADS  Google Scholar 

  32. A. Vakil, N. Engheta, Transformation optics using graphene. Science 332, 1291 (2011)

    ADS  Google Scholar 

  33. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302, 419 (2003)

    ADS  Google Scholar 

  34. Y. Zhang, G.T. Fei, L.D. Zhang, Plasmon hybridzation in coated metallic nanosphere. J. Appl. Phys. 109, 054315 (2011)

    ADS  Google Scholar 

  35. E.H. Hasdeo, A.R. Nugraha, M.S. Dresselhaus, R. Saito, Breit–Wigner–Fano line shapes in Raman spectra of graphene. Phys. Rev. B 90, 245140 (2014)

    ADS  Google Scholar 

  36. M. Aliofkhazraei, N. Ali, W.I. Milne, C.S. Ozkan, S. Mitura, J.L. Gervasoni, Graphene Science Handbook: Electrical and Optical Properties (CRC Press, Boca Raton, 2016)

    Google Scholar 

  37. U. Biswas, J.K. Rakshit, G.K. Bharti, Design of photonic crystal microring resonator based all-optical refractive-index sensor for analyzing different milk constituents. Opt. Quantum Electron 52, 1 (2020)

    Google Scholar 

  38. M. Esmaeilzadeh, H. Dizajghorbani-Aghdam, R. Malekfar, Surface-Enhanced Raman scattering of methylene blue on titanium nitride nanoparticles synthesized by laser ablation in organic solvents. Spectrochim. Acta A Mol. Biomol. Spectrosc. 257, 119721 (2021)

    Google Scholar 

  39. C.J. Shearer, A.D. Slattery, A.J. Stapleton, J.G. Shapter, C.T. Gibson, Accurate thickness measurement of graphene. Nanotechnology 27, 125704 (2016)

    ADS  Google Scholar 

  40. M. Farokhnezhad, M. Esmaeilzadeh, Optical and photothermal properties of graphene coated Au–Ag hollow nanoshells: a modeling for efficient photothermal therapy. J. Phys. Chem. C 123, 28907 (2019)

    Google Scholar 

  41. S.G. Babu, M. Gopiraman, D. Deng, K. Wei, R. Karvembu, I.S. Kim, Robust Au–Ag/graphene bimetallic nanocatalyst for multifunctional activity with high synergism. Chem. Eng. J. 300, 146 (2016)

    Google Scholar 

  42. Y. Zhang, Q. Chen, X. Chen, A. Wang, Z. Tian, J. Li, Graphene-coated Au nanoparticle-enhanced Raman spectroscopy. J. Raman Spectrosc. 52, 439 (2021)

    ADS  Google Scholar 

  43. W. Zhao, P. Tan, J. Zhang, J. Liu, Charge transfer and optical phonon mixing in few-layer graphene chemically doped with sulfuric acid. Phys. Rev. B 82, 245423 (2010)

    ADS  Google Scholar 

  44. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707 (2010)

    ADS  Google Scholar 

  45. M. Piliarik, P. Kvasnička, N. Galler, J.R. Krenn, J. Homola, Local refractive index sensitivity of plasmonic nanoparticles. Opt. Express 19, 9213 (2011)

    ADS  Google Scholar 

  46. H.R. Hegde, S. Chidangil, R.K. Sinha, Refractive index and formaldehyde sensing with silver nanocubes. RSC Adv. 11, 8042 (2021)

    ADS  Google Scholar 

  47. S. Kumari, S.M. Tripathi, Hybrid plasmonic SOI ring resonator for bulk and affinity bio-sensing applications. Silicon 14, 11577–11586 (2022)

    Google Scholar 

  48. R. Guider, D. Gandolfi, T. Chalyan, L. Pasquardini, A. Samusenko, C. Pederzolli, G. Pucker, L. Pavesi, Sensitivity and limit of detection of biosensors based on ring resonators. Sens. Biosens. Res. 6, 99 (2015)

    Google Scholar 

  49. G. Palermo, D. Pagnotto, L. Ricciardi, L. Pezzi, M.L. Deda, A.D. Luca, Thermoplasmonic effects in gain-assisted nanoparticle solutions. J. Phys. Chem. C 121, 24185 (2017)

    Google Scholar 

Download references

Acknowledgements

MSS acknowledge SERB-DST, Govt. of India for financial support through #CRG/2019/006912, and Dr. S. M. Tripathi (IIT Kanpur, India) for COMSOL related help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manmohan Singh Shishodia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Shishodia, M.S., Agarwal, D. et al. Fano resonances in graphene coated refractory nitride nanoshell and nanomatryoshka for sensing food adulteration. Appl. Phys. A 129, 366 (2023). https://doi.org/10.1007/s00339-023-06651-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06651-9

Keywords

Navigation