Skip to main content
Log in

Graphene–Ti3C2Tx MXene hybrid nanostructure: a promising material for sensitivity enhancement in plasmonic sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

MXene has emerged as a promising material for various optoelectronics applications. In view of the advanced properties of MXene, surface plasmon resonance (SPR)-based sensor utilising graphene–Ti3C2Tx MXene hybrid nanostructure is proposed for sensitivity enhancement. The sensor’s performance is theoretically demonstrated in terms of sensitivity and detection accuracy at incident light wavelength of 633 nm for a broad analyte refractive index (RI) range (1.33–1.36). Further, the effect of increasing Ti3C2Tx MXene layers on the sensitivity is analysed. In addition, a significantly high average sensitivity is demonstrated at 532 nm for analyte RI in the vicinity of 1.32. This work will open new possibilities for graphene–Ti3C2Tx MXene-based hybrid nanostructures in SPR-based bio- and gas-sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Avouris, M. Freitag, IEEE J. Sel. Top. Quantum Electron. 20, 6000112 (2014)

    Article  Google Scholar 

  2. G. Rubio-Bollinger, R. Guerrero, D. de Lara, J. Quereda, L. Vaquero-Garzon, N. Agraït, R. Bratschitsch, A. Castellanos-Gomez, Electronics 4, 847 (2015)

    Article  Google Scholar 

  3. M. Donarelli, L. Ottaviano, Sensors (Basel). 18, (2018)

  4. S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Small 11, 640 (2015)

    Article  Google Scholar 

  5. Q. Peng, Z. Wang, B. Sa, B. Wu, Z. Sun, Sci. Rep. 6, 31994 (2016)

    Article  ADS  Google Scholar 

  6. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23, 4248 (2011)

    Article  Google Scholar 

  7. H. Kim, Z. Wang, H.N. Alshareef, Nano Energy 60, 179 (2019)

    Article  Google Scholar 

  8. A. Sarycheva, A. Polemi, Y. Liu, K. Dandekar, B. Anasori, Y. Gogotsi, Sci. Adv. 4, 1 (2018)

    Article  Google Scholar 

  9. D.B. Velusamy, J.K. El-Demellawi, A.M. El-Zohry, A. Giugni, S. Lopatin, M.N. Hedhili, A.E. Mansour, E. Di Fabrizio, O.F. Mohammed, H.N. Alshareef, Adv. Mater. 1807658, 1 (2019)

    Google Scholar 

  10. K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Chem. Soc. Rev. 47, 5109 (2018)

    Article  Google Scholar 

  11. L. Wu, Q. You, Y. Shan, S. Gan, Y. Zhao, X. Dai, Y. Xiang, Sensor. Actuat. B Chem. 277, 210 (2018)

    Article  Google Scholar 

  12. Q. Wu, N. Li, Y. Wang, Y. Liu, Y. Xu, S. Wei, J. Wu, G. Jia, X. Fang, F. Chen, X. Cui, Biosens. Bioelectron. 144, 111697 (2019)

    Article  Google Scholar 

  13. Y. Xu, Y.S. Ang, L. Wu, L.K. Ang, Nanomaterials 9, 1 (2019)

    Google Scholar 

  14. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, New York, Berlin, Heidelberg, 1988).

    Book  Google Scholar 

  15. J.-F. Masson, ACS Sens. 2, 16 (2017)

    Article  Google Scholar 

  16. A.K. Pandey, Photon. Nanostr. Fundam. Appl. 42, 100863 (2020). https://doi.org/10.1016/j.photonics.2020.100863

  17. L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, D. Fan, Sens. Actuat. B Chem. 249, 542 (2017)

    Article  Google Scholar 

  18. Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, D. Fan, IEEE Photon. J. 8, 1 (2016)

    Google Scholar 

  19. A.K. Sharma, A.K. Pandey, IEEE Photon. Technol. Lett. 30, 595 (2018)

    Article  ADS  Google Scholar 

  20. B. Aïssa, A. Ali, K.A. Mahmoud, T. Haddad, M. Nedil, Appl. Phys. Lett. 109, 1 (2016)

    Article  Google Scholar 

  21. S. Xu, Y. Dall’Agnese, J. Li, Y. Gogotsi, W. Han, Chem. Eur. J. 24, 18556 (2018)

    Article  Google Scholar 

  22. M.Q. Zhao, N. Trainor, C.E. Ren, M. Torelli, B. Anasori, Y. Gogotsi, Adv. Mater. Technol. 4, 1 (2019)

    Google Scholar 

  23. L. Wu, J. Guo, X. Dai, Y. Xiang, D. Fan, Plasmonics 1 (2017)

  24. A.K. Sharma, A.K. Pandey, B. Kaur, Materials (Basel). 12, 1542 (2019)

    Article  ADS  Google Scholar 

  25. I.H. Malitson, J. Opt. Soc. Am. 55, 1205 (1965)

    Article  ADS  Google Scholar 

  26. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  27. J.W. Weber, V.E. Calado, M.C.M. van de Sanden, Appl. Phys. Lett. 97, 130 (2010)

    Google Scholar 

  28. Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, K.T. Yong, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  29. N.-H. Kim, M. Choi, T.W. Kim, W. Choi, S.Y. Park, K.M. Byun, Sensors 19, 1894 (2019)

    Article  Google Scholar 

  30. L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, IEEE Photonics J. 8, (2016).

  31. L. Wu, Y. Jia, L. Jiang, J. Guo, X. Dai, Y. Xiang, D. Fan, J. Light. Technol. 35, 82 (2017)

    Article  ADS  Google Scholar 

  32. A. Srivastava, A. Verma, R. Das, Y.K. Prajapati, Optik (Stuttg). 203, 163430 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Kumar Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A.K. Graphene–Ti3C2Tx MXene hybrid nanostructure: a promising material for sensitivity enhancement in plasmonic sensor. Appl. Phys. A 127, 78 (2021). https://doi.org/10.1007/s00339-020-04235-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04235-5

Keywords

Navigation