Skip to main content
Log in

ZnO-activated SnO2–TiO2 ternary nanocomposite based highly selective formaldehyde sensor at room temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Researchers highlight the field of nanosized semiconducting oxide gas sensors because of threats to the atmosphere and health of humans. In this work, Zn-doped SnO2–TiO2 ternary nanocomposites were synthesized via the method of co-precipitation and hydrothermal method. Stannic chloride, titanium isopropoxide and zinc nitrate were used as precursors. Ternary nanocomposites with different composition of ZnO-doped SnO2–TiO2 were obtained and named as STZ1, STZ2 and STZ3. The characterization studies of ternary nanocomposites were determined by X-ray diffractogram, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy and UV-diffused reflectance spectroscopy (UV-DRS) analyses. To construct sensing devices, STZ1, STZ2 and STZ3 were coated on glass substrate as a thick film via doctor blade method. The STZ2 fabricated sensor shows the best selectivity to formaldehyde and attains maximum sensitivity at 100 ppm of gas concentration and at 10 ppm response time and recovery time was 8 s and 9 s, respectively, at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Treves, F.J. Santiago-Ávila, W.S. Lynn, Just preservation. Biol. Cons. 229, 134–141 (2019)

    Article  Google Scholar 

  2. H. Hu, H. Liang, J. Fan, L. Guo, H. Li, N.F. de Rooij, G. Zhou, Assembling hollow cactus-like ZnO nanorods with dipole-modified graphene nanosheets for practical room-temperature formaldehyde sensing. ACS Appl. Mater. Interfaces 14(11), 13186–13195 (2022)

    Article  Google Scholar 

  3. M. A. Bhat, F. N. Eraslan, K. Gedik, E. O. Gaga, Impact of textile product emissions: toxicological considerations in assessing indoor air quality and human health. In Ecological and Health Effects of Building Materials (pp. 505–541). Springer, Cham (2022)

  4. D. Petric, Known human carcinogens and the importance of toxicology in cancer research. ScienceOpen Preprints (2021)

  5. J. Sun, S. Bai, Y. Tian, Y. Zhao, N. Han, R. Luo, A. Chen, Hybridization of ZnSnO3 and rGO for improvement of formaldehyde sensing properties. Sens. Actu. B Chem. 257, 29–36 (2018)

    Article  Google Scholar 

  6. G. D. Leikauf, Formaldehyde and other saturated aldehydes. Environ. Toxicants Hum. Exposur. Health Effects 555–626 (2020)

  7. E. Eltzov, A.L. De Cesarea, Y.K.A. Low, R.S. Marks, Indoor air pollution and the contribution of biosensors. EuroBiotech J. 3(1), 19–31 (2019)

    Article  Google Scholar 

  8. A. Bi, S. Yang, M. Liu, X. Wang, W. Liao, W. Zeng, Fluorescent probes and materials for detecting formaldehyde: from laboratory to indoor for environmental and health monitoring. RSC Adv. 7(58), 36421–36432 (2017)

    Article  ADS  Google Scholar 

  9. T. Su, R. He, Methods in determination of formaldehyde. In Formaldehyde and Cognition (pp. 271–295). Springer, Dordrecht (2017)

  10. Y. Li, N. Chen, D. Deng, X. Xing, X. Xiao, Y. Wang, Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sens. Actu. B Chem. 238, 264–273 (2017)

    Article  Google Scholar 

  11. B.J. Wang, S.Y. Ma, S.T. Pei, X.L. Xu, P.F. Cao, J.L. Zhang, T. Han, High specific surface area SnO2 prepared by calcining Sn–MOFs and their formaldehyde-sensing characteristics. Sens. Actu. B Chem 321, 128560 (2020)

    Article  Google Scholar 

  12. D. Liu, J. Pan, J. Tang, W. Liu, S. Bai, R. Luo, Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties. J. Phys. Chem. Solids 124, 36–43 (2019)

    Article  ADS  Google Scholar 

  13. D. Meng, D. Liu, G. Wang, X. San, Y. Shen, Q. Jin, F. Meng, CuO hollow microspheres self-assembled with nanobars: synthesis and their sensing properties to formaldehyde. Vacuum 144, 272–280 (2017)

    Article  ADS  Google Scholar 

  14. L.Y. Zhu, K. Yuan, J.G. Yang, H.P. Ma, T. Wang, X.M. Ji, H.L. Lu, Fabrication of heterostructured p-CuO/n-SnO2 core-shell nanowires for enhanced sensitive and selective formaldehyde detection. Sens. Actu. B Chem. 290, 233–241 (2019)

    Article  Google Scholar 

  15. L. Yang, J. Yang, Q. Dong, F. Zhou, Q. Wang, Z. Wang, X. Xiong, One-step synthesis of CuO nanoparticles based on flame synthesis: as a highly effective non-enzymatic sensor for glucose, hydrogen peroxide and formaldehyde. J. Electroanal. Chem. 881, 114965 (2021)

    Article  Google Scholar 

  16. Z. Wang, C. Hou, Q. De, F. Gu, D. Han, One-step synthesis of Co-doped In2O3 nanorods for high response of formaldehyde sensor at low temperature. ACS Sens. 3(2), 468–475 (2018)

    Article  Google Scholar 

  17. W. Ge, Y. Chang, V. Natarajan, Z. Feng, J. Zhan, X. Ma, In2O3-SnO2 hybrid porous nanostructures delivering enhanced formaldehyde sensing performance. J. Alloy. Compd. 746, 36–44 (2018)

    Article  Google Scholar 

  18. K. Wan, D. Wang, F. Wang, H. Li, J. Xu, X. Wang, J. Yang, Hierarchical In2O3@ SnO2 core–shell nanofiber for high efficiency formaldehyde detection. ACS Appl. Mater. Interfaces. 11(48), 45214–45225 (2019)

    Article  Google Scholar 

  19. S. Mehmood, F. Khan, M. Shah, J. Ma, Y. Yang, G. Li, X. Pan, A novel room-temperature formaldehyde gas sensor based on walnut-like WO3 modification on Ni–graphene composites. Front. Chem. 10 (2022)

  20. X. Li, X. Li, J. Wang, S. Lin, Highly sensitive and selective room-temperature formaldehyde sensors using hollow TiO2 microspheres. Sens. Actu. B Chem. 219, 158–163 (2015)

    Article  Google Scholar 

  21. H. Liang, L. Guo, N. Cao, H. Hu, H. Li, N.F. de Rooij, G. Zhou, Practical room temperature formaldehyde sensing based on a combination of visible-light activation and dipole modification. J. Mater. Chem. A 9(42), 23955–23967 (2021)

    Article  Google Scholar 

  22. F.C. Chung, Z. Zhu, P.Y. Luo, R.J. Wu, W. Li, Au@ ZnO core–shell structure for gaseous formaldehyde sensing at room temperature. Sens. Actu. B Chem. 199, 314–319 (2014)

    Article  Google Scholar 

  23. J. Liu, L. Zhang, B. Cheng, J. Fan, J. Yu, A high-response formaldehyde sensor based on fibrous Ag-ZnO/In2O3 with multi-level heterojunctions. J. Hazard. Mater. 413, 125352 (2021)

    Article  Google Scholar 

  24. C. Dong, X. Liu, B. Han, S. Deng, X. Xiao, Y. Wang, Nonaqueous synthesis of Ag-functionalized In2O3/ZnO nanocomposites for highly sensitive formaldehyde sensor. Sens. Actu. B Chem. 224, 193–200 (2016)

    Article  Google Scholar 

  25. S. Zhang, S. Sun, B. Huang, N. Wang, X. Li, UV-enhanced formaldehyde sensor using hollow In2O3@ TiO2 double-layer nanospheres at room temperature. ACS Appl. Mater. Interfaces (2023)

  26. D. Xu, Y. Zhang, Z. Deng, B. Zi, J. Zeng, Z. Song, Q. Liu, Metal-organic framework-derived LaFeO3@ SnO2/Ag p–n heterojunction nanostructures for formaldehyde detection. ACS Appl. Nano Mater. 5(10), 14367–14376 (2022)

    Article  Google Scholar 

  27. W. Wei, S. Guo, C. Chen, L. Sun, Y. Chen, W. Guo, S. Ruan, High sensitive and fast formaldehyde gas sensor based on Ag-doped LaFeO3 nanofibers. J. Alloy. Compd. 695, 1122–1127 (2017)

    Article  Google Scholar 

  28. L. Du, H. Li, S. Li, L. Liu, Y. Li, S. Xu, Q. Liang, A gas sensor based on Ga-doped SnO2 porous microflowers for detecting formaldehyde at low temperature. Chem. Phys. Lett. 713, 235–241 (2018)

    Article  ADS  Google Scholar 

  29. R. Kumar, X. Liu, J. Zhang, M. Kumar, Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials. Nano Micro Lett. 12(1), 1–37 (2020)

    Article  Google Scholar 

  30. K. Lokesh, G. Kavitha, E. Manikandan, G.K. Mani, K. Kaviyarasu, J.B.B. Rayappan, M. Maaza, IEEE Sens. J. 16(8), 2477–2483 (2016)

    Article  ADS  Google Scholar 

  31. P. Scherrer, Bestimmung der Grösse undder inneren Struktur von Kolloidteilchenmittels Röntgenstrahlen, Nachr. Ges. Wiss. Göttingen 2698 (1918)

  32. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11102 (1978)

  33. Z. Zhang, Y. Ma, X. Bu, Q. Wu, Z. Hang, Z. Dong, X. Wu, Facile one-step synthesis of TiO2/Ag/SnO2 ternary heterostructures with enhanced visible light photocatalytic activity. Sci. Rep. 8(1), 1–11 (2018)

    ADS  Google Scholar 

  34. I.G. Morozov, O.V. Belousova, D. Ortega, M.K. Mafina, M.V. Kuznetcov, Structural, optical, XPS and magnetic properties of Zn particles capped by ZnO nanoparticles. J. Alloy. Compd. 633, 237–245 (2015)

    Article  Google Scholar 

  35. A. Bjelajac, R. Petrović, G.E. Stan, G. Socol, A. Mihailescu, I.N. Mihailescu, D. Janaćković, C-doped TiO2 nanotubes with pulsed laser deposited Bi2O3 films for photovoltaic application. Ceram. Int. 48(4), 4649–4657 (2022)

    Article  Google Scholar 

  36. R.G. Anjitha, S. Ahirwar, K. Singh, A. Andhiwal, P.K. Basu, Design, fabrication, and packaging of an optothermally activated nanocrystalline Pd–ZnO-based selective CO sensor on a screen-printed in-plane heater. ACS Appl. Electronic Mater. 4(4), 1651–1668 (2022)

    Article  Google Scholar 

  37. W. Tian, X. Liu, W. Yu, Research progress of gas sensor based on graphene and its derivatives: a review. Appl. Sci. 8(7), 1118 (2018)

    Article  Google Scholar 

  38. D. Dastan, Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel. Appl. Phys. A 123, 1–13 (2017)

    Article  ADS  Google Scholar 

  39. A. Gurlo, Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3(1), 154–165 (2011)

    Article  ADS  Google Scholar 

  40. C. Rana, S.R. Bera, S. Saha, Growth of SnS nanoparticles and its ability as ethanol gas sensor. J. Mater. Sci. Mater. Electron. 30(3), 2016–2029 (2019)

    Article  Google Scholar 

  41. Y. Kang, F. Yu, L. Zhang, W. Wang, L. Chen, Y. Li, Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics 360, 115544 (2021)

    Article  Google Scholar 

  42. Q. Tian, W. Wu, L. Sun, S. Yang, M. Lei, J. Zhou, V.A. Roy, Tube-like ternary α-Fe2O3@ SnO2@ Cu2O sandwich heterostructures: synthesis and enhanced photocatalytic properties. ACS Appl. Mater. Interfaces 6(15), 13088–13097 (2014)

    Article  Google Scholar 

  43. B.C. Yadav, K. Agrahari, S. Singh, T.P. Yadav, Fabrication and characterization of nanostructured indium tin oxide film and its application as humidity and gas sensors. J. Mater. Sci. Mater. Electron. 27(5), 4172–4179 (2016)

    Article  Google Scholar 

  44. R. Saad, A. Gamal, M. Zayed, A.M. Ahmed, M. Shaban, M. BinSabt, H. Hamdy, Fabrication of ZnO/CNTs for application in CO2 sensor at room temperature. Nanomaterials 11(11), 3087 (2021)

    Article  Google Scholar 

  45. A. Koo, R. Yoo, S.P. Woo, H.S. Lee, W. Lee, Enhanced acetone-sensing properties of pt-decorated al-doped ZnO nanoparticles. Sens. Actu. B Chem. 280, 109–119 (2019)

    Article  Google Scholar 

  46. S. Arunkumar, T. Hou, Y.B. Kim, B. Choi, S.H. Park, S. Jung, D.W. Lee, Au Decorated ZnO hierarchical architectures: facile synthesis, tunable morphology and enhanced CO detection at room temperature. Sens. Actu. B Chem. 243, 990–1001 (2017)

    Article  Google Scholar 

  47. Q.A. Drmosh, Z.H. Yamani, A.H. Hendi, M.A. Gondal, R.A. Moqbel, T.A. Saleh, M.Y. Khan, A novel approach to fabricating a ternary rGO/ZnO/Pt system for high-performance hydrogen sensor at low operating temperatures. Appl. Surf. Sci. 464, 616–626 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dr. K. Jeyadeepan, Assistant Professor (Research), Multifunctional Materials & Devices Lab, SASTRA University, Thanjavur, Tamil Nadu for providing gas-sensing setup Lab.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [VV], [PA] and [DG]. The first draft of the manuscript was written by [VV] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to V. Vidhya.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidhya, V., Anbarasu, P. & Geetha, D. ZnO-activated SnO2–TiO2 ternary nanocomposite based highly selective formaldehyde sensor at room temperature. Appl. Phys. A 129, 382 (2023). https://doi.org/10.1007/s00339-023-06633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06633-x

Keywords

Navigation