Skip to main content
Log in

Photoluminescence properties of cerium-doped zinc oxide nanotubes prepared using electrodeposition technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Well-ordered ZnO and Ce-doped ZnO (Ce-ZnO) nanotubes arrays with external diameter of 60 nm are obtained by oxidizing the Zn and Ce-Zn nanotube arrays electrodeposited into self-made anodic aluminum oxide template under different deposition potentials. The ratio of Ce to Zn in Ce-ZnO nanotubes can be modulated by deposition potentials. Like ZnO nanotubes, all Ce-ZnO nanotubes display polycrystalline hexagonal wurtzite structure without a distinctly preferential orientation. Nevertheless, due to smaller Zn ions being partly replaced by larger Ce ions, lattice parameters of Ce-ZnO nanotubes slightly increase in comparison with ZnO nanotubes. The only present ultraviolet (UV) emission peak as well as absent defect emission peak in all samples including ZnO nanotubes, indicates that all nanotubes synthesized by the electrochemical deposition possess good crystallinity. Compared with ZnO nanotubes, Ce-ZnO nanotubes fabricated under deposition potential of − 1.35 and − 1.4 V exhibit stronger UV emission. Especially in the case of − 1.35 V, Ce-ZnO nanotubes with the Ce:Zn ratio of 1:7 display twice the UV emission intensity of ZnO nanotubes, which shows doping an appropriate amount of Ce into ZnO nanotubes can sharply increase UV emission. The reason for the enhancement of UV emission is that CeO2 in Ce-ZnO nanotubes also has the stronger UV emission. These hollow Ce-ZnO nanotubes could have potential application in UV light-emitting diodes, photocatalysis, gas sensor, drug delivery, or other nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data for this study are available from the corresponding author upon reasonable request.

References

  1. F. Rahman, Opt. Eng. 58, 010901 (2019)

    ADS  Google Scholar 

  2. Z. Jia, C. Yuan, Y. Liu, X.-J. Wang, P. Sun, L. Wang, H. Jiang, J. Jiang, Light Sci. Appl. 9, 86 (2020)

    Article  ADS  Google Scholar 

  3. L. Garcés, C.R. Garcia, V. Rodriguez-Gonzalez, D.Y. Medina-Velazquez, J. Oliva, Ceramics Int. 48, 17885 (2022)

    Article  Google Scholar 

  4. Y. Zhao, Y. Chen, G. Zhang, D. Huang, R. Zhan, S. Deng, N. Xu, J. Chen, Vacuum 199, 110970 (2022)

    Article  ADS  Google Scholar 

  5. Q. Yao, P. Hu, P. Sun, M. Liu, R. Dong, C. Fu, Y. Liu, J. Jiang, H. Jiang, Adv. Mater. 32, 1907888 (2020)

    Article  Google Scholar 

  6. S. Shahzad, S. Javed, M. Usman, Front. Mater. 8, 613825 (2021)

    Article  Google Scholar 

  7. C.V. Manzano, G. Bürki, L. Pethö, J. Michler, L. Philippe, J. Mater. Chem. C 5, 1706 (2017)

    Article  Google Scholar 

  8. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  9. N. Jayaprakash, R. Suresh, S. Rajalakshmi, S. Raja, E. Sundaravadivel, M. Gayathri, M. Sridharan, Mater. Technol. 35, 112 (2020)

    Article  ADS  Google Scholar 

  10. S. Öztürk, A. Kösemen, Z.A. Kösemen, N. Kılınç, Z.Z. Öztürk, M. Penza, Sens. Actuators B: Chem. 222, 280 (2016)

    Article  Google Scholar 

  11. M. González-Garnica, A. Galdámez-Martínez, F. Malagón, C.D. Ramos, G. Santana, R. Abolhassani, P.K. Panda, A. Kaushik, Y.K. Mishra, T.V.K. Karthik, A. Dutt, Sens. Actuators B: Chem. 337, 129765 (2021)

    Article  Google Scholar 

  12. Z. Ye, T. Wang, S. Wu, X. Ji, Q. Zhang, J. Alloys Compd. 690, 189 (2017)

    Article  Google Scholar 

  13. X. Fang, Y. Bando, M. Liao, U.K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, D. Golberg, Adv. Mater. 21, 2034 (2009)

    Article  Google Scholar 

  14. S. Yun, T. Guo, Y. Li, X. Gao, A. Huang, L. Kang, Mater. Res. Bull. 130, 110935 (2020)

    Article  Google Scholar 

  15. A. Galdámez-Martínez, Y. Bai, G. Santana, R.S. Sprick, A. Dutt, Int. J. Hydrogen Energy 45, 31942 (2020)

    Article  Google Scholar 

  16. Z. Ben Ayadi, L. El Mir, K. Djessas, S. Alaya, Nanotechnology 18, 445702 (2007)

    Article  ADS  Google Scholar 

  17. J. Lang, Q. Han, J. Yang, C. Li, X. Li, L. Yang, Y. Zhang, M. Gao, D. Wang, J. Cao, J. Appl. Phys. 107, 074302 (2010)

    Article  ADS  Google Scholar 

  18. A. Chelouche, T. Touam, D. Djouadi, A. Aksas, Optik 125, 5626 (2014)

    Article  ADS  Google Scholar 

  19. C. Theivarasu, T. Indumathi, J. Mater. Sci.: Mater. Electron. 28, 3664 (2017)

    Google Scholar 

  20. Z.A. Abdelouhab, D. Djouadi, A. Chelouche, T. Touam, J. Sol-Gel Sci. Technol. 95, 136 (2020)

    Article  Google Scholar 

  21. N. Panda, B. Acharya, T.B. Singh, R. Gartia, Mater. Lett. 95, 205 (2013)

    Article  Google Scholar 

  22. C. Heng, T. Wang, H. Li, J. Liu, J. Zhu, A. Ablimit, W. Su, H. Wu, P. Yin, T. Finstad, Mater. Lett. 162, 53 (2016)

    Article  Google Scholar 

  23. B. Abderrahmane, A. Djamila, N. Chaabia, R. Fodil, J. Alloys Compd. 829, 154498 (2020)

    Article  Google Scholar 

  24. C. Karunakaran, P. Gomathisankar, G. Manikandan, Mater. Chem. Phys. 123, 585 (2010)

    Article  Google Scholar 

  25. A. George, S.K. Sharma, S. Chawla, M. Malik, M. Qureshi, J. Alloys Compd. 509, 5942 (2011)

    Article  Google Scholar 

  26. N. Narayanan, N.K. Deepak, Solid State Sci. 78, 144 (2018)

    Article  ADS  Google Scholar 

  27. D. Gao, L. Lyu, B. Lyu, J. Ma, L. Yang, J. Zhang, Mater. Res. Bull. 89, 102 (2017)

    Article  Google Scholar 

  28. Y.-J. Liu, H.-D. Zhang, J. Zhang, S. Li, J.-C. Zhang, J.-W. Zhu, M.-G. Gong, X.-X. Wang, Y.-Z. Long, J. Appl. Phys. 122, 105102 (2017)

    Article  ADS  Google Scholar 

  29. Y. Li, J.-C. Liu, X.-X. Lian, T. Lü, F.-X. Zhao, Trans. Nonferrous Metals Soc. China 25, 3657 (2015)

    Article  Google Scholar 

  30. J. Iqbal, X. Liu, H. Zhu, C. Pan, Y. Zhang, D. Yu, R. Yu, J. Appl. Phys. 106, 083515 (2009)

    Article  ADS  Google Scholar 

  31. X.K. Duan, Y.S. Wang, L.B. Bao, W.P. Zhou, N. Bai, G.H. Yun, Appl. Phys. Express 15, 095001 (2022)

    Article  ADS  Google Scholar 

  32. L.F. Koao, F.B. Dejene, M. Tsega, H.C. Swart, Physica B 480, 53 (2016)

    Article  ADS  Google Scholar 

  33. J. Yang, M. Gao, L. Yang, Y. Zhang, J. Lang, D. Wang, Y. Wang, H. Liu, H. Fan, Appl. Surf. Sci. 255, 2646 (2008)

    Article  ADS  Google Scholar 

  34. A.H. Morshed, M.E. Moussa, S.M. Bedair, R. Leonard, S.X. Liu, N. El-Masry, Appl. Phys. Lett. 70, 1647 (1997)

    Article  ADS  Google Scholar 

  35. K. Vanheusden, W. Warren, C. Seager, D. Tallant, J. Voigt, B. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  ADS  Google Scholar 

  36. W.S. Shi, O. Agyeman, C.N. Xu, J. Appl. Phys. 91, 5640 (2002)

    Article  ADS  Google Scholar 

  37. J. Jie, A. Morita, H. Shirai, J. Appl. Phys. 108, 033521 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11164017 and 11904186) and Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region, China (Grant Nos. NJZY19006 and NJZZ20001) and Special fund for innovation and entrepreneurship of graduate students of Inner Mongolia University (Grant No 11200-121024).

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute equally to this article, among whom WD, WZ, and GY are co-corresponding authors.

Corresponding author

Correspondence to Wenping Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Li, W., Wu, D. et al. Photoluminescence properties of cerium-doped zinc oxide nanotubes prepared using electrodeposition technique. Appl. Phys. A 129, 344 (2023). https://doi.org/10.1007/s00339-023-06625-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06625-x

Keywords

Navigation