Skip to main content
Log in

Synthesis and Photocatalytic Properties of Ce-Doped TiO2 Nanotube Arrays via Anodic Oxidation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ce-doped TiO2 nanotube arrays (TNAs) were prepared successfully through one-step anodic oxidation methods. The structural and morphological features of the TNAs were monitored by x-ray diffraction and field emission scanning electron microscopy with energy dispersive spectroscopy. Ultraviolet–visible light absorption spectra showed the light absorption performances of TiO2 nanotubes in both ultraviolet (UV) and visible light regions. Also, the photocatalytic activities of these samples were measured by the photodegradation rate of methylene blue (MB). The result indicated that doping a moderate amount of cerium ions into TNAs increased the absorption of both ultraviolet light and visible light obviously. However, the excess amount of doping ions would destroy the tubular structure severely and decrease the specific surface area of TNAs sharply. It could directly lead to the decreasing of photocatalytic activitity of TNAs. Furthermore, the best photodegradation rate of the Ce-doped TNAs on MB reached to 95.6%, which had a huge improvement comparing with pure TNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.X. Miao, X.D. Yuan, H.B. Lv, H. Zhou, W.G. Zheng, and G.R. Zhou, Optik 127, 168 (2016).

    Article  Google Scholar 

  2. Y. Fang, G. Sun, Y.H. Bi, and H. Zhi, Sci. Bull. 60, 256 (2015).

    Article  Google Scholar 

  3. T. Alizadeh, R.E. Sabzi, and H. Alizadeh, Talanta 147, 90 (2016).

    Article  Google Scholar 

  4. B.T. Xiong, C.R. Wang, J.Y. Luo, B.X. Chen, B.X. Zhou, and Z.Y. Zhu, Sci. China Chem. 56, 101 (2013).

    Article  Google Scholar 

  5. E.J. Kim, M.J. Kim, N.R. Im, and S.N. Park, J. Photochem. Photobiol. B 149, 196 (2015).

    Article  Google Scholar 

  6. Y.X. Li, L. Li, L.X. Cao, and C.F. Yang, Chem. Eng. J. 283, 1145 (2016).

    Article  Google Scholar 

  7. Z.L. Hua, Z.Y. Dai, X. Bai, Z.F. Ye, P. Wang, H.X. Gu, and X. Huang, Chem. Eng. J. 283, 514 (2016).

    Article  Google Scholar 

  8. K. Siuzdak, M. Szkoda, A.L. Oleksiak, K. Grochowskaa, J. Karczewskic, and J. Ryl, Appl. Surf. Sci. 357, 942 (2015).

    Article  Google Scholar 

  9. Z.C. Lian, W.C. Wang, S.N. Xiao, X. Li, Y.Y. Cui, D.Q. Zhang, G.S. Li, and H.X. Li, Sci. Rep. 5, 1 (2015).

    Google Scholar 

  10. J.H. Kong, Y.Q. Wang, Z.S. Wang, and H.X. Jia, Superlattice Microstruct. 89, 252 (2016).

    Article  Google Scholar 

  11. A.M. Bakhshayesh and N. Bakhshayesh, J. Colloid Interface Sci. 460, 18 (2015).

    Article  Google Scholar 

  12. M. Moradzaman, M.R. Mohammadi, and H. Nourizadeh, Mater. Sci. Semicond. Process. 40, 383 (2015).

    Article  Google Scholar 

  13. J. Luo, J.Y. Chen, H.Y. Wang, and H.Q. Liu, J. Power Sources 303, 287 (2016).

    Article  Google Scholar 

  14. H. Lin and C. Shih, J. Mol. Catal. A 411, 128 (2016).

    Article  Google Scholar 

  15. Y.C. Li, Q. Ma, J. Han, L.L. Ji, J.X. Wang, J.Y. Chen, and Y.Q. Wang, Appl. Surf. Sci. 297, 103 (2014).

    Article  Google Scholar 

  16. S. Soo, S. Kumar, A. Umar, A. Kaur, S.K. Mehta, and S.K. Kansal, J. Alloy. Compd. 650, 193 (2015).

    Article  Google Scholar 

  17. Q.H. Chen, Y.J. Xin, and X.W. Zhu, Electrochim. Acta 186, 34 (2015).

    Article  Google Scholar 

  18. S. Kitazawa, S. Yamamoto, M. Asano, Y. Saitoh, and S. Ishiyama, Nucl. Instrum. Methods B 256, 233 (2007).

    Article  Google Scholar 

  19. Y.C. Li, Y.Q. Wang, J.H. Kong, and J.X. Wang, Appl. Surf. Sci. 328, 115 (2015).

    Article  Google Scholar 

  20. A.R. Tanyi, A.I. Rafieh, P. Ekaneyaka, A.L. Tan, D.J. Young, Z. Zheng, C. Vijila, G.S. Subramanian, and R.L.N. Chandrakanthi, Electrochim. Acta 178, 240 (2015).

    Article  Google Scholar 

  21. X.H. Li, S.L. Zhang, Y. Jia, X.X. Liu, and Q. Zhong, J. Nat. Gas Chem. 21, 17 (2012).

    Article  Google Scholar 

  22. P. Sathishkumar, R.V. Mangalaraja, O. Rozas, H.D. Mansilla, M.A. Gracia-Pinilla, and S. Anandan, Ultrason. Sonochem. 21, 1675 (2014).

    Article  Google Scholar 

  23. S.C. Di, Y.P. Guo, H.W. Lv, J. Yu, and Z.W. Li, Ceram. Int. 41, 6178 (2015).

    Article  Google Scholar 

  24. S. Ghosh, R. Ganesan, R. Sridharan, and T. Gnanasekaran, J. Nucl. Mater. 467, 280 (2015).

    Article  Google Scholar 

  25. M.K. Tian, H.M. Wang, D.S. Sun, W.J. Peng, and W.L. Tao, Int. J. Hydrog. Energy 39, 13448 (2014).

    Article  Google Scholar 

  26. S. Kityakarn, Y. Pooarporn, P. Songsiriritthigul, A. Worayingyonga, S. Roblc, A.M. Braund, and M. Wörner, Electrochim. Acta 83, 113 (2012).

    Article  Google Scholar 

  27. Y.C. Li, Y.Q. Wang, J.H. Kong, H.X. Jia, and Z.S. Wang, Appl. Surf. Sci. 344, 176 (2015).

    Article  Google Scholar 

  28. X. Fan, J. Wan, E.Z. Liu, L. Sun, Y. Hu, H. Li, X.Y. Hu, and J. Fan, Ceram. Int. 41, 5107 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqian Wang or Dawei Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, J., Wang, Y., Sun, Q. et al. Synthesis and Photocatalytic Properties of Ce-Doped TiO2 Nanotube Arrays via Anodic Oxidation. J. Electron. Mater. 46, 4791–4797 (2017). https://doi.org/10.1007/s11664-017-5418-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5418-8

Keywords

Navigation