Skip to main content
Log in

Superhydrophobic poly-4-methyl-1-pentene/polyvinylidene fluoride coating with excellent passive daytime radiation cooling performance

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Passive daytime radiation cooling (PDRC) materials have attracted more and more attention due to their low energy consumption, no pollution and energy saving potential. However, current PDRC materials face many challenges in practical applications, such as expensive raw materials, complex manufacturing processes, and performance degradation due to surface contamination by dust. Herein, we prepared a poly-4-methyl-1-pentene/polyvinylidene fluoride (TPX/PVDF) superhydrophobic PDRC coating by a simple scraping method. By optimizing the amount of TPX in the scraping solution, the surface contact angle (CA) of the coating can reach 153.5° and the sliding angle (SA) is 8.9°, showing good self-cleaning properties. At the same time, the solar reflectance (Rs) can reach 91.6%, and the infrared emissivity (EIR) is larger than 0.97. Under direct sunlight in hot summer months, the coating sample can achieve a radiative cooling effect of 7.5 °C below the ambient temperature on average. Additionally, the TPX/PVDF coating was used as the roof and exterior paint of a miniature house (MH), and the cooling performance of the TPX/PVDF coating under direct sunlight was studied. The result indicated that the mean interior temperature of the MH covered with TPX/PVDF coating is 13.5 °C lower than that of the unmodified MH. Importantly, once the radiative cooling ability of the TPX/PVDF coating degraded due to surface dirt accumulating, it can recover automatically via its self-cleaning function. The TPX/PVDF based superhydrophobic and radiative cooling coating has a broad application prospect in the field of building energy conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used in the present work is available in the manuscript.

Abbreviations

TPX:

Poly-4-methyl-1-pentene

PVDF:

Polyvinylidene fluoride

PDRC:

Passive daytime radiation cooling

SPDRC:

Superhydrophobic and passive daytime radiation cooling

ATW:

Atmosphere transparent window

CA:

Contact angle

SA:

Sliding angle

DMAC:

Dimethylacetamide

R S :

Solar reflectance

E IR :

Infrared thermal emissivity

CCP:

Commercial cooling paint

TPC:

TPX/PVDF coating

MH:

Miniature house

AC:

Artificial contamination

References

  1. DOE, Building Energy Data Book, Department of Energy, US (2011)

  2. X. Lu, P. Xu, H. Wang, T. Yang, J. Hou, Cooling potential and applications prospects of passive radiative cooling in buildings: the current state-of-the-art. Renew. Sust. Energ. Rev. 65, 1079–1097 (2016)

    Google Scholar 

  3. R. Family, M.P. Mengüç, Materials for radiative cooling: a review. Procedia Environ. Sci. 38, 752–759 (2017)

    Google Scholar 

  4. K. Panchabikesan, K. Vellaisamy, V. Ramalingam, Passive cooling potential in buildings under various climatic conditions in India. Renew. Sust. Energ. Rev. 78, 1236–1252 (2017)

    Google Scholar 

  5. J.H. Chen, L. Lu, Development of radiative cooling and its integration with buildings: a comprehensive review. Sol. Energy 212, 125–151 (2020)

    ADS  Google Scholar 

  6. X.Q. Li, W.R. Xie, C.X. Sui, P.C. Hsu, Multispectral thermal management designs for net-zero energy buildings. ACS Mater. Lett. 2, 1624–1643 (2020)

    Google Scholar 

  7. A.M. Omer, Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 12, 2265–2300 (2008)

    Google Scholar 

  8. Y.F. Wu, H.X. Zhao, H.L. Sun, M.F. Duan, B.R. Lin, S.D. Wu, A review of the application of radiative sky cooling in buildings: challenges and optimization. Energy Convers. Manag. 265, 115768 (2022)

    Google Scholar 

  9. U. Eicker, A. Dalibard, Photovoltaic-thermal collectors for night radiative cooling of buildings. Sol. Energy 85, 1322–1335 (2011)

    ADS  Google Scholar 

  10. M. Hanif, T.M.I. Mahliaa, A. Zare, T.J. Saksahdan, H.S.C. Metselaar, Potential energy savings by radiative cooling system for a building in tropical climate. Renew. Sustain. Energy Rev. 32, 642–650 (2014)

    Google Scholar 

  11. Y. Cui, Y. Wang, L. Zhu, Performance analysis on a building-integrated solar heating and cooling panel. Renew. Energy 74, 627–632 (2015)

    Google Scholar 

  12. A.P. Raman, M.A. Anoma, L.X. Zhu, E. Rephaeli, S.H. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014)

    ADS  Google Scholar 

  13. Y. Zhai, Y.G. Ma, S.N. David, D.L. Zhao, R.N. Lou, G. Tan, R.G. Yang, X.B. Yin, Scalable-manufactured randomized glass-polymer hybrid-metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017)

    ADS  Google Scholar 

  14. T. Li, Y. Zhai, S.M. He, W.T. Gan, Z.Y. Wei, M. Heidarinejad, D. Dalgo, R.Y. Mi, X.P. Zhao, J.W. Song, J.Q. Dai, C.J. Chen, A. Aili, A. Vellore, A.S. Martini, R.G. Yang, J. Srebric, X.B. Yin, L.B. Hu, A radiative cooling structural material. Science 364, 760–763 (2019)

    ADS  Google Scholar 

  15. P. Yang, C. Chen, Z. Zhang, A dual-layer structure with record-high solar reflectance for daytime radiative cooling. Sol. Energy 169, 316–324 (2018)

    ADS  Google Scholar 

  16. K.-T. Lin, J. Han, Ke. Li, C. Guo, H. Lin, B. Jia, Radiative cooling: fundamental physics, atmospheric influences, materials and structural engineering, applications and beyond. Nano Energy 80, 105517 (2021)

    Google Scholar 

  17. C.G. Granqvist, A. Hjortsberg, T.S. Eriksson, Radiative cooling to low temperatures with selectivity IR emitting surfaces. Thin Solid Films 90, 187–190 (1982)

    ADS  Google Scholar 

  18. J.W. Liu, J. Zhang, H.J. Tang, Z.H. Zhou, D.B. Zhang, L. Ye, D.L. Zhao, Recent advances in the development of radiative sky cooling inspired from solar thermal harvesting. Nano Energy 81, 105611 (2021)

    Google Scholar 

  19. X.Q. Li, X.Z. Min, J.L. Li, N. Xu, P.C. Zhu, B. Zhu, S.N. Zhu, J. Zhu, Storage and recycling of interfacial solar steam enthalpy. Joule 2, 2477–2484 (2018)

    Google Scholar 

  20. K.X. Lin, L.K. Chao, H.H. Lee, R. Xin, S. Liu, T.C. Ho, B.L. Huang, K.M. Yu, C.Y. Tso, Potential building energy savings by passive strategies combining daytime radiative coolers and thermochromic smart windows. Case Stud. Therm. Eng. 28, 101517 (2021)

    Google Scholar 

  21. X. Xue, M. Qiu, Y.W. Li, Q.M. Zhang, S.Q. Li, Z. Yang, C. Feng, W.D. Zhang, J.G. Dai, D.Y. Lei, W. Jin, L.J. Xu, T. Zhang, J. Qin, H.Q. Wang, S.H. Fan, Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 32, 1906751 (2020)

    Google Scholar 

  22. T. Xia, H. Wang, High reflective polyethylene glycol terephthalate package 1ayer for passive daytime radiative cooling in photo voltaic cells. Solar Energ. 237, 313–319 (2022)

    ADS  Google Scholar 

  23. Z. Wang, D. Kortge, J. Zhu, Z.G. Zhou, H. Torsina, C.Y. Lee, P. Bermel, Lightweight, passive radiative cooling to enhance concentrating photovoltaics. Joule 4, 2702–2717 (2020)

    Google Scholar 

  24. S.N. Zeng, S.J. Pian, M.Y. Su, Z.N. Wang, M.Q. Wu, X.H. Liu, M.Y. Chen, Y.Z. Xiang, J.W. Wu, M.N. Zhang, Q.Q. Cen, Y.W. Tang, X.H. Zhou, Z.H. Huang, R. Wang, A. Tunuhe, X.Y. Sun, Z.G. Xia, M.W. Tian, M. Chen, X. Ma, L. Yang, J. Zhou, H.M. Zhou, Q. Yang, X. Li, Y.G. Ma, G.M. Tao, Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696 (2021)

    ADS  Google Scholar 

  25. X.S. Zhang, W.F. Yang, Z.W. Shao, Y.G. Li, Y. Su, Q.H. Zhang, C.Y. Hou, H.Z. Wang, A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 16, 2188 (2022)

    Google Scholar 

  26. L. Zhou, H.M. Song, J.W. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z.F. Yu, B. Ooi, Q.Q. Gan, A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2, 718 (2019)

    Google Scholar 

  27. X. Wang, X.H. Liu, Z.Y. Li, H.W. Zhang, Z.W. Yang, H. Zhou, T.X. Fan, Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 30, 1907562 (2019)

    Google Scholar 

  28. S.D.H. Rezaei, Z.G. Dong, J.Y.E. Chan, J. Trisno, R.J.H. Ng, Q.F. Ruan, C.W. Qiu, N.A. Mortensen, J.K.W. Yang, Nanophotonic structural colors. ACS Photonics 8, 18–33 (2021)

    Google Scholar 

  29. E. Rephaeli, A. Raman, S. Fan, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13, 1457–1461 (2013)

    ADS  Google Scholar 

  30. A.R. Gentle, G.B. Smith, Radiative heat pumping from the earth using surface phonon resonant nanoparticles. Nano Lett. 10, 373–379 (2010)

    ADS  Google Scholar 

  31. X.Z. Ao, M.K. Hu, B. Zhao, N. Chen, G. Pei, C.W. Zou, Preliminary experimental study of a specular and a diffuse surface for daytime radiative cooling. Sol. Energ. Mater. Sol. C. 191, 290–296 (2019)

    Google Scholar 

  32. Y.W. Liu, A.Q. Bai, Z.G. Fang, Y.R. Ni, C.H. Lu, Z.Z. Xu, A pragmatic bilayer selective emitter for efficient radiative cooling under direct sunlight. Materials 12, 1208 (2019)

    ADS  Google Scholar 

  33. Y.P. Tian, H. Shao, X.J. Liu, F.Q. Chen, Y.S. Li, C.Y. Tang, Y. Zheng, Superhydrophobic and recyclable cellulose-fiber-based composites for high-efficiency passive radiative cooling. ACS Appl. Mater. Inter. 13, 22521–22530 (2021)

    Google Scholar 

  34. A. Aili, Z.Y. Wei, Y.Z. Chen, D.L. Zhao, R.G. Yang, X.B. Yin, Selection of polymers with functional groups for daytime radiative cooling. Mater. Today Phys. 10, 100127 (2019)

    Google Scholar 

  35. S.J. Nie, X.Y. Tan, X.Y. Li, K. Wei, T. Xiao, L.H. Jiang, J.L. Geng, Y. Liu, W.W. Hu, X.B. Chen, Facile and environmentally-friendly fabrication of robust composite film with superhydrophobicity and radiative cooling property. Comp. Sci. Tech. 230, 109750 (2022)

    Google Scholar 

  36. C.H. Xue, R.X. Wei, X.J. Guo, B.Y. Liu, M.M. Du, M.C. Huang, H.G. Li, S.T. Jia, Fabrication of superhydrophobic P(VDF-HFP)/SiO2 composite film for stable radiative cooling. Comp. Sci. Tech. 220, 109279 (2022)

    Google Scholar 

  37. H.D. Wang, C.H. Xue, X.J. Guo, B.Y. Liu, Z.Y. Ji, M.C. Huang, S.T. Jia, Superhydrophobic porous film for daytime radiative cooling. Appl. Mater. Today 24, 101100 (2021)

    Google Scholar 

  38. G.L. Chen, Y.M. Wang, J. Qiu, J.Y. Cao, Y.C. Zou, S.Q. Wang, J.H. Ouyang, D.C. Jia, Y. Zhou, A visibly transparent radiative cooling film with self-cleaning function produced by solution processing. J. Mater. Sci. Technol. 90, 76–84 (2021)

    Google Scholar 

  39. F.S. Gill, D. Uniyal, B. Prasad, S. Saluja, A. Mishra, R.K. Bachheti, S. Juyal, Investigation of increased electrical conductivity by rGO in rGO/PVDF/PMMA/PTFE nanocomposites. J. Mol. Struct. 1267, 133541 (2022)

    Google Scholar 

  40. N. María, Y. Patil, G. Polymeropoulos, A. Peshkov, V. Rodionov, J. Maiz, N. Hadjichristidis, A.J. Müller, (PVDF)2(PEO)2 miktoarm star copolymers: Synthesis and isothermal crystallization leading to exclusive β-phase formation. Eur. Polym. J. 179, 111506 (2022)

    Google Scholar 

  41. L.N. Sim, S.R. Majid, A.K. Arof, FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib. Spectrosc. 58, 57–66 (2012)

    Google Scholar 

  42. R. Jayaraman, P. Vickraman, N.M.V. Subramanian, A.S. Justin, A.C impedance, XRD, DSC, FTIR studies on PbTiO3 dispersoid pristine PVdF-co-HFP and PEMA blended PVdF-co-HFP microcomposite electrolytes. J Non-Cryst Solids 435, 27–32 (2016)

    ADS  Google Scholar 

  43. M. Choi, J.Y. Seo, S.W. Yoon, Y.S. Nam, J.C. Lee, B.J. Lee, All-day radiative cooling using a grating-patterned PDMS film emitter. Appl. Therm. Eng. 214, 118771 (2022)

    Google Scholar 

  44. J. Liu, C.F. Xu, X.Z. Ao, K.G. Lu, B. Zhao, G. Pei, A dual-layer polymer-based film for all-day sub-ambient radiative sky cooling. Energy 254, 124350 (2022)

    Google Scholar 

  45. Z.F. Huang, X.L. Ruan, Nanoparticle embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Tran. 104, 890–896 (2017)

    Google Scholar 

  46. H. Bao, C.N. Yan, B.X. Wang, X. Fang, C.Y. Zhao, X.L. Ruan, Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling. Sol. Energ. Mater. Sol. C. 168, 78–84 (2017)

    Google Scholar 

  47. J. Mandal, Y.K. Fu, A.C. Overvig, M.X. Jia, K.R. Sun, N.N. Shi, H. Zhou, X.H. Xiao, N.F. Yu, Y. Yang, Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018)

    ADS  Google Scholar 

  48. X.Y. Li, J. Peoples, Z.F. Huang, Z.X. Zhao, J. Qiu, X.L. Ruan, Full daytime sub-ambient radiative cooling in commercial-like paints with high figure of merit. Cell Rep. Phys. Sci. 1, 100221 (2020)

    Google Scholar 

  49. X.Y. Li, J. Peoples, P. Yao, X.L. Ruan, Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Appl. Mater. Inter. 13, 21733–21739 (2021)

    Google Scholar 

  50. S. Zhang, W.L. Jing, Z. Chen, C.Y. Zhang, D.X. Wu, Y.F. Gao, H.T. Zhu, Full daytime sub-ambient radiative cooling film with high efficiency and low cost. Renew Energ. 194, 850–857 (2022)

    Google Scholar 

  51. M.V. Bagepalli, J.D. Yarrington, A.J. Schrader, Z.M. Zhang, D. Ranjan, P.G. Loutzenhiser, Measurement of flow properties coupled to experimental and numerical analyses of dense, granular flows for solar thermal energy storage. Sol. Energy 207, 77–90 (2020)

    ADS  Google Scholar 

  52. J. Huang, M.Z. Li, D.S. Fan, Core-shell particles for devising high-performance full-day radiative cooling paint. Appl. Mater. Today 25, 101209 (2021)

    Google Scholar 

Download references

Funding

This work was financial supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 21KJB430002), Program for International S&T Cooperation Projects of Changzhou City (No. CZ20210028).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Fajun Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 6377 KB)

Supplementary file2 (MP4 6264 KB)

Supplementary file3 (AVI 5463 KB)

Supplementary file4 (AVI 6111 KB)

Supplementary file5 (AVI 16039 KB)

Supplementary file6 (MOV 32929 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Wang, F., Lei, S. et al. Superhydrophobic poly-4-methyl-1-pentene/polyvinylidene fluoride coating with excellent passive daytime radiation cooling performance. Appl. Phys. A 129, 266 (2023). https://doi.org/10.1007/s00339-023-06560-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06560-x

Keywords

Navigation